RESUMO
Although photoredox catalysis is complex from a mechanistic point of view, it is also often surprisingly efficient. In fact, the quantum efficiency of a puzzlingly large portion of photoredox reactions exceeds 100% (i.e., the measured quantum yields (QYs) are >1). Hence, these photoredox reactions can be more than perfect with respect to photon utilization. In several documented cases, a single absorbed photon can lead to the formation of >100 molecules of the product, behavior known to originate from chain processes. In this Perspective, we explore the underlying reasons for this efficiency, identify the nature of common catalytic chains, and highlight the differences between HAT and SET chains. Our goal is to show why chains are especially important in photoredox catalysis and where the thermodynamic driving force that sustains the SET catalytic cycles comes from. We demonstrate how the interplay of polar and radical processes can activate hidden catalytic pathways mediated by electron and hole transfer (i.e., electron and hole catalysis). Furthermore, we illustrate how the phenomenon of redox upconversion serves as a thermodynamic precondition for electron and hole catalysis. After discussing representative mechanistic puzzles, we analyze the most common bond forming steps, where redox upconversion frequently occurs (and issometimes unavoidable). In particular, we highlight the importance of 2-center-3-electron bonds as a recurring motif that allows a rational chemical approach to the design of redox upconversion processes.
RESUMO
BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core. This method represents an advantageous approach for BODIPY functionalization compared to existing strategies.
RESUMO
Racemic total synthesis of the natural product oxacyclododecindione, isolated in 2008 as the first member of the oxacyclododecindione family, is reported. Studies toward this molecule commenced with a biomimetic late-stage C-H oxidation starting from 14-deoxyoxacyclododecindione as a known precursor. This provided insights into the reactivity of the macrolactone class but did not permit the synthesis of the target natural product. Based on these results, a synthetic strategy through intramolecular Friedel-Crafts acylation combined with Barton decarboxylation to introduce the tertiary alcohol, a major challenge in previous synthetic efforts, was envisioned. This resulted in an 11-step racemic total synthesis of (±)-oxacyclododecindione, renowned for its potent anti-inflammatory and antifibrotic activities.
Assuntos
Produtos Biológicos , Compostos Macrocíclicos , Anti-Inflamatórios , AcilaçãoRESUMO
Herein, the first total synthesis of natural 13-hydroxy-14-deoxyoxacyclododecindione along with the revision of the proposed configuration is reported. This natural product, initially discovered in 2018, belongs to the oxacyclododecindione family, renowned for their remarkable anti-inflammatory and antifibrotic activities. The synthetic route involves an esterification/Friedel-Crafts-acylation approach and uses various triol fragments. It allows the preparation of different stereoisomers, including the (revised) natural product, two threo-derivatives, and two Z-isomers of the endocyclic CâC double bond. Furthermore, a late-stage inversion of the C-13 stereocenter could transform the originally proposed structure into the revised natural product. With this comprehensive set of compounds and the previously prepared (13R,14S,15R)-isomer, deeper insights into their structural properties and biological activities were obtained. A detailed analysis of the final macrolactones using spectroscopy (NMR, IR, UV-vis) and X-ray crystallography gave new insights such as the significance of the optical rotation for the elucidation of their configuration and the light-induced E/Z double-bond photoisomerization. The pharmacological potential of the compounds was underlined by remarkably low IC50 values in biological assays addressing the inhibition of cellular inflammatory responses.
Assuntos
Anti-Inflamatórios , Macrolídeos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/síntese química , Lactonas/farmacologia , Lactonas/química , Lactonas/síntese química , Estrutura Molecular , Estereoisomerismo , Macrolídeos/química , Macrolídeos/farmacologiaRESUMO
INTRODUCTION: The genus Omphalotus, in particular the "Jack-O'Lantern mushrooms" Omphalotus illudens and Omphalotus olearius, are famous for the production of the DNA-alkylating illudins. A lesser-known species, Omphalotus mexicanus, native to Central America, also produces cytotoxic illudins S and M, but its minor secondary metabolites are yet to be investigated. OBJECTIVE: To identify, isolate, and elucidate the structure of novel secondary metabolites of the illudin family in mycelial extracts of O. mexicanus from submerse cultivation. METHODOLOGY: A fermentation of the fungus in 15 L stirred tank bioreactors is described. Mycelial extracts were separated using a combination of flash chromatography with preparative RP-C18 high-performance liquid chromatography (HPLC). Analysis of metabolites was done using an ultrahigh-performance liquid chromatography ultraviolet diode array detector (UPLC-UV-DAD) system coupled to an electrospray ionisation quadrupole time-of-flight (ESI-QTOF) mass spectrometer. Structures were elucidated using one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance spectroscopy (NMR) techniques followed by comparison of experimental and simulated electronic circular dichroism (ECD) spectra to determine absolute configurations. RESULTS: Two novel illudin derivatives, for which we propose the names omphaderol (1) and illudaneol B (2), as well as illudaneol (3) and the unusual cyclobutylcyclopentane illudosin (4), were isolated from the mycelia and characterised. CONCLUSION: Particularly the illudaneol derivatives with their high titers may be potential building blocks for an alternative semisynthetic route to new illudin derivatives with improved medical properties. Additionally, the findings improve the knowledge of minor illudin compounds in the mycelial extract of this fungus and may be of significance for future biosynthetic studies of the illudins.
Assuntos
Agaricales , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
The aim of this study was to investigate the transition from non-covalent reversible over covalent reversible to covalent irreversible inhibition of cysteine proteases by making delicate structural changes to the warhead scaffold. To this end, dipeptidic rhodesain inhibitors with different N-terminal electrophilic arenes as warheads relying on the SNAr mechanism were synthesized and investigated. Strong structure-activity relationships of the inhibition potency, the degree of covalency, and the reversibility of binding on the arene substitution pattern were found. The studies were complemented and substantiated by molecular docking and quantum-mechanical calculations of model systems. Furthermore, the improvement in the membrane permeability of peptide esters in comparison to their corresponding carboxylic acids was exemplified.
Assuntos
Cisteína Proteases , Inibidores de Cisteína Proteinase , Simulação de Acoplamento Molecular , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/metabolismo , Relação Estrutura-Atividade , Cisteína Proteases/metabolismo , Cisteína Proteases/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Estrutura MolecularRESUMO
Organic photocatalysts frequently possess dual singlet and triplet photoreactivity and a thorough photochemical characterization is essential for efficient light-driven applications. In this article, the mode of action of a polyazahelicene catalyst (Aza-H) was investigated using laser flash photolysis (LFP). The study revealed that the chromophore can function as a singlet-state photoredox catalyst in the sulfonylation/arylation of styrenes and as a triplet sensitizer in energy transfer catalysis. The singlet lifetime is sufficiently long to exploit the exceptional excited state reduction potential for the activation of 4-cyanopyridine. Photoinduced electron transfer generating the radical cation was directly observed confirming the previously proposed mechanism of a three-component reaction. Several steps of the photoredox cycle were investigated separately, providing deep insights into the complex mechanism. The triplet-excited Aza-H, which was studied with quantitative LFP, is formed with a quantum yield of 0.34. The pronounced triplet formation was exploited for the isomerization reaction of (E)-stilbene to the Z-isomer and the cyclization of cinnamyl chloride. Catalyst degradation mainly occurs through the long-lived Aza-H triplet (28 µs), but the photostability is greatly increased when the triplet efficiently reacts in a catalytic cycle such that turnover numbers exceeding 4400 are achievable with this organocatalyst.
RESUMO
A series of substituted derivatives of tetraaza[7]helicenes were synthesized and the influence of the substitution on their photophysical and photoredox-catalytic properties was studied. The combination of their high fluorescence quantum yields of up to 0.65 and their circularly polarized luminescence (CPL) activity results in CPL brightness values (BCPL ) that are among the highest recorded for [7]helicenes so far. A sulfonylation/hetarylation reaction using cyanopyridines as substrates for photoinduced electron transfer (PET) from the excited helicenes was conducted to test for viability in photoredox catalysis. DFT calculations predict the introduction of electron withdrawing substituents to yield more oxidizing catalysts.
RESUMO
Reactions involving C(sp3)-H bonds of azaarenes have been widely studied in recent years as they allow direct functionalization of these N-heterocycles without the use of harsh reaction conditions. In this work, we describe the C(sp3)-H functionalization of 4-methylquinazolines and 1-benzylisoquinolines, employing α-substituted ß-nitrostyrenes catalyzed by inexpensive copper acetate. Under the optimized condition, 21 pyrrolo[1,2-c]quinazolines, as well as an imidazo[1,2-c]quinazoline and 4 pyrrolo[2,1-a]isoquinolines, were obtained in moderate to good yields. Furthermore, the biological activity of the pyrrolo[1,2-c]quinazolines was evaluated against Plasmodium falciparum, and promising results were obtained.
Assuntos
Antimaláricos , Quinazolinas , Cobre/farmacologia , Cobre/química , Isoquinolinas/química , CatáliseRESUMO
A synthesis of pyrrolo[2,1-a]isoquinolines based on intramolecular condensation of an enaminone intermediate obtained by C-acylation of an N-alkylated 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinolinium salt was developed. This methodology was further applied to the total synthesis of lamellarin G trimethyl ether from commercially available starting materials compatible with xylochemistry with an overall yield of 26% in 7 steps based on homoveratrylamine.
RESUMO
Herein, we describe two complementary approaches towards various organic thiocyanates that are affordable, reliable and follow the principles of sustainable chemistry, starting from commercially available thiols or disulfides. Additionally, the application of this mild method to the first total synthesis of psammaplin B is demonstrated. Non-toxic and inexpensive ferricyanide is used as the cyanide source, which can be activated either in a mechanochemical, solvent-free approach, or in a biphasic solvent system allowing easier work-up. A total of 27 examples is demonstrated, with up to quantitative yields.
Assuntos
Ferrocianetos , Tiocianatos , Cianetos , DissulfetosRESUMO
The first total syntheses of the orchid-derived natural products isoarundinin I (1), (±)-bleochrin F ((±)-2), (±)-blestanol K ((±)-3), and (±)-pleionol ((±)-4) from renewable starting materials are reported, along with the evaluation of their biological activities. The total syntheses were based on regioselective aromatic bromination reactions in combination with a key acid-promoted regioselective intramolecular cyclization. The biological results suggest that isoarundinin I (1), (±)-blestanol K ((±)-3), and (±)-pleionol ((±)-4) have the potential to inhibit the growth of both sensitive and multidrug-resistant cancer cells.
Assuntos
Produtos Biológicos , Produtos Biológicos/química , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ciclização , Halogenação , EstereoisomerismoRESUMO
The first total synthesis of the natural product (13R,14S,15R)-13-hydroxy-14-deoxyoxacyclododecindione, which was isolated in 2018 as a member of the oxacyclododecindione family, is reported. A synthetic strategy through intramolecular Friedel-Crafts acylation combined with the stereoselective synthesis of a new triol key fragment allowed the preparation of the macrolactone. Due to mismatching physical data of the synthetic product, a revision of the configuration of the natural product isolated in 2018 is required. Light-induced E/Z-isomerism of the macrolactone backbone is described for the first time in the class of oxacyclododecindione-type macrolactones. The hydroxylated macrolactone prepared herein was found to show highly promising IC50 values in biological assays addressing the inhibition of inflammatory responses.
Assuntos
Anti-Inflamatórios , Anti-Inflamatórios/farmacologia , Isomerismo , Estrutura Molecular , EstereoisomerismoRESUMO
The determination of the absolute configuration (AC) of an organic molecule is still a challenging task for which the combination of spectroscopic with quantum-mechanical methods has become a promising approach. In this study, we investigated the accuracy of DFT methods (480 overall combinations of 15 functionals, 16 basis sets, and 2 solvation models) to calculate the VCD spectra of six chiral organic molecules in order to benchmark their capability to facilitate the determination of the AC.
RESUMO
Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.
Assuntos
Ácido Hialurônico , Periodontite , Humanos , Ácido Hialurônico/farmacologia , Engenharia Tecidual , Oxigênio , Porphyromonas gingivalis , Periodontite/terapia , Periodontite/microbiologiaRESUMO
Saturation transfer difference (STD), inter-ligand NOEs (INPHARMA NMR), and docking calculations are reported for investigating specific binding sites of the high-affinity synthetic 7-nitrobenz-2-oxa-1,3-diazoyl-4-C12 fatty acid (NBD-C12 FA) with non-labeled human serum albumin (HSA) and in competition with the drugs warfarin and ibuprofen. A limited number of negative interligand NOEs between NBD-C12 FA and warfarin were interpreted in terms of a short-range allosteric competitive binding in the wide Sudlow's binding site II (FA7) of NBD-C12 FA with Ser-202, Lys-199, and Trp-214 and warfarin with Arg-218 and Arg-222. In contrast, the significant number of interligand NOEs between NBD-C12 FA and ibuprofen were interpreted in terms of a competitive binding mode in Sudlow's binding site I (FA3 and FA4) with Ser-342, Arg-348, Arg-485, Arg-410, and Tyr-411. NBD-C12 FA has the unique structural properties, compared to short-, medium-, and long-chain saturated and unsaturated natural free fatty acids, of interacting with well-defined structures with amino acids of both the internal and external polar anchor sites in Sudlow's binding site I and with amino acids in both FA3 and FA4 in Sudlow's binding site II. The NBD-C12 FA, therefore, interacts with novel structural characteristics in the drug binding sites I and II and can be regarded as a prototype molecule for drug development.
Assuntos
Ácidos Graxos não Esterificados , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica/química , Ibuprofeno , Ligação Proteica , Varfarina , Sítios de Ligação , Ácidos Graxos/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/metabolismoRESUMO
The fields of RNA modification and RNA damage both exhibit a plethora of non-canonical nucleoside structures. While RNA modifications have evolved to improve RNA function, the term RNA damage implies detrimental effects. Based on stable isotope labelling and mass spectrometry, we report the identification and characterisation of 2-methylthio-1,N6-ethenoadenosine (ms2 ϵA), which is related to 1,N6-ethenoadenine, a lesion resulting from exposure of nucleic acids to alkylating chemicals in vivo. In contrast, a sophisticated isoprene labelling scheme revealed that ms2 ϵA biogenesis involves cleavage of a prenyl moiety in the known transfer RNA (tRNA) modification 2-methylthio-N6-isopentenyladenosine (ms2 i6 A). The relative abundance of ms2 ϵA in tRNAs from translating ribosomes suggests reduced function in comparison to its parent RNA modification, establishing the nature of the new structure in a newly perceived overlap of the two previously separate fields, namely an RNA modification damage.
Assuntos
Adenosina , Nucleosídeos , Adenosina/química , RNA de Transferência/química , RNA , RNA BacterianoRESUMO
In a search for anti-inflammatory compounds from fungi inhibiting the promoter activity of the small chemokine CXCL10 (Interferon-inducible protein 10, IP-10) as a pro-inflammatory marker gene, the new dihydroxanthone methyl (1R, 2R)-1,2,8-trihydroxy-6-(hydroxymethyl)-9-oxo-2,9-dihydro-1H-xanthene-1-carboxylate (2) and the previously described dihydroxanthone AGI-B4 (1) were isolated from fermentations of a Diaporthe species. The structures of the compounds were elucidated by a combination of one- and two-dimensional NMR spectroscopy, mass spectrometry, and calculations using density functional theory (DFT). Compounds 1 and 2 inhibited the LPS/IFNγ induced CXCL10 promoter activity in transiently transfected human MonoMac6 cells in a dose-dependent manner with IC50 values of 4.1 µM (±0.2 µM) and 1.0 µM (±0.06 µM) respectively. Moreover, compounds 1 and 2 reduced mRNA levels and synthesis of pro-inflammatory mediators such as cytokines and chemokines in LPS/IFNγ stimulated MonoMac6 cells by interfering with the Stat1 and NFκB pathway.
Assuntos
Anti-Inflamatórios , Ascomicetos/química , Quimiocina CXCL10 , Anti-Inflamatórios/farmacologia , Citocinas , Humanos , Interferon gama , NF-kappa BRESUMO
Invited for the cover of this issue is the group of Till Opatz at the University of Mainz. The image depicts the electrochemical coupling of amines and carboxylic acids to form amides. Read the full text of the article at 10.1002/chem.202201768.
RESUMO
The ubiquity of amide bonds, present in natural products and common pharmaceuticals renders this functional group one of the most prevalent in organic chemistry. Despite its importance and a wide variety of existing methods for its formation, the latter still can be a challenge for classical activating reagents such as chloridating agents or carbodiimides. As the spent reagents often cannot be recycled, the development of more sustainable methods is highly desirable. Herein, we report an operationally simple and mild indirect electrochemical protocol to effect the condensation of carboxylic acids with amines, forming a wide variety of carboxamides.