Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomed Eng Online ; 22(1): 84, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641065

RESUMO

BACKGROUND: The challenges in developing new bone replacement materials and procedures reside not solely in technological innovation and advancement, but also in a broader patient therapy acceptance. Therefore, there is a need to assess patients' perspectives on the materials and approaches in use as well as the ones being developed to better steer future progress in the field. METHODS: A self-initiating cross-sectional questionnaire aimed at people seeking treatment at the university hospital environment of Charité Berlin was formulated. The survey contained 15 close-ended questions directed toward the participant's epidemiological profile, willingness, acceptance, and agreement to receive different bone replacement materials, as well as, worries about the post-surgical consequences that can arise post bone replacement surgery. Descriptive and categorical analysis was performed to compare the observed number of subjects, their profile and each related response (Pearson's chi-square test or Fischer's test, p < 0.05). RESULTS: A total of 198 people engaged with the questionnaire, most of them Millennials. Overall patients trusted scientifically developed biomaterials designed for bone replacement, as demonstrated by their willingness to participate in a clinical trial, their acceptance of alloplastic materials, and the none/few worries about the presence of permanent implants. The data revealed the preferences of patients towards autologous sources of cells and blood to be used with a biomaterial. The data have also shown that both generation and education influenced willingness to participate in a clinical trial and acceptance of alloplastic materials, as well as, worries about the presence of permanent implants and agreement to receive a material with pooled blood and cells. CONCLUSION: Patients were open to the implantation of biomaterials for bone replacement, with a preference toward autologous sources of blood and/or tissue. Moreover, patients are concerned about strategies based on permanent implants, which indicates a need for resorbable materials. The knowledge gained in this study supports the development of new bone biomaterials.


Assuntos
Substitutos Ósseos , Humanos , Estudos Transversais , Materiais Biocompatíveis , Hospitais
2.
Comput Biol Med ; 168: 107817, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064852

RESUMO

Titanium patient-specific (CAD/CAM) plates are frequently used in mandibular reconstruction. However, titanium is a very stiff, non-degradable material which also induces artifacts in the imaging. Although magnesium has been proposed as a potential material alternative, the biomechanical conditions in the reconstructed mandible under magnesium CAD/CAM plate fixation are unknown. This study aimed to evaluate the primary fixation stability and potential of magnesium CAD/CAM miniplates. The biomechanical environment in a one segmental mandibular reconstruction with fibula free flap induced by a combination of a short posterior titanium CAD/CAM reconstruction plate and two anterior CAD/CAM miniplates of titanium and/or magnesium was evaluated, using computer modeling approaches. Output parameters were the strains in the healing regions and the stresses in the plates. Mechanical strains increased locally under magnesium fixation. Two plate-protective constellations for magnesium plates were identified: (1) pairing one magnesium miniplate with a parallel titanium miniplate and (2) pairing anterior magnesium miniplates with a posterior titanium reconstruction plate. Due to their degradability and reduced stiffness in comparison to titanium, magnesium plates could be beneficial for bone healing. Magnesium miniplates can be paired with titanium plates to ensure a non-occurrence of plate failure.


Assuntos
Retalhos de Tecido Biológico , Reconstrução Mandibular , Humanos , Retalhos de Tecido Biológico/cirurgia , Reconstrução Mandibular/métodos , Magnésio , Titânio , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Placas Ósseas
3.
Front Bioeng Biotechnol ; 10: 1005022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466355

RESUMO

Due to their advantages in applicability, patient-specific (CAD/CAM) reconstruction plates are increasingly used in fibula free flap mandible reconstruction. In addition, recently, CAD/CAM miniplates, with further advantages in postoperative management, have been introduced. However, biomechanical conditions induced by CAD/CAM systems remain partially unknown. This study aimed to evaluate the primary fixation stability of CAD/CAM fixators. For a patient-specific scenario, the biomechanical conditions induced in a one segmental fibula free flap stabilized using either a CAD/CAM reconstruction plate or CAD/CAM miniplates were determined using finite element analysis. The main output parameters were the strains between intersegmental bone surfaces and stresses in the fixation systems due to different biting scenarios. CAD/CAM miniplates resulted in higher mechanical strains in the mesial interosseous gap, whereas CAD/CAM reconstruction plate fixation resulted in higher strains in the distal interosseous gap. For all investigated fixation systems, stresses in the fixation systems were below the material yield stress and thus material failure would not be expected. While the use of CAD/CAM miniplates resulted in strain values considered adequate to promote bone healing in the mesial interosseous gap, in the distal interosseous gap CAD/CAM reconstruction plate fixation might result in more beneficial tissue straining. A mechanical failure of the fixation systems would not be expected.

4.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614440

RESUMO

In fractures of the mandible, osteosynthesis with titanium plates is considered the gold standard. Titanium is an established and reliable material, its main disadvantages being metal artefacts and the need for removal in case of osteosynthesis complications. Magnesium, as a resorbable material with an elastic modulus close to cortical bone, offers a resorbable alternative osteosynthesis material, yet mechanical studies in mandible fracture fixation are still missing. The hypothesis of this study was that magnesium miniplates show no significant difference in the mechanical integrity provided for fracture fixation in mandible fractures under load-sharing indications. In a non-inferiority test, a continuous load was applied to a sheep mandible fracture model with osteosynthesis using either titanium miniplates of 1.0 mm thickness (Ti1.0), magnesium plates of 1.75 mm (Mg1.75), or magnesium plates of 1.5 mm thickness (Mg1.5). No significant difference (p > 0.05) was found in the peak force at failure, stiffness, or force at vertical displacement of 1.0 mm between Mg1.75, Mg1.5, and Ti1.0. This study shows the non-inferiority of WE43 magnesium miniplates compared to the clinical gold standard titanium miniplates.

5.
Front Bioeng Biotechnol ; 9: 803103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35223813

RESUMO

Titanium fixation devices are the gold standard for the treatment of mandibular fractures; however, they present serious limitations, such as non-degradability and generation of imaging artifacts. As an alternative, biodegradable magnesium alloys have lately drawn attention due to their biodegradability and biocompatibility. In addition, magnesium alloys offer a relatively high modulus of elasticity in comparison to biodegradable polymers, being a potential option to substitute titanium in highly loaded anatomical areas, such as the mandible. This study aimed to evaluate the biomechanical competence of magnesium alloy WE43 plates for mandibular fracture fixation in comparison to the clinical standard or even softer polymer solutions. A 3D finite element model of the human mandible was developed, and four different fracture scenarios were simulated, together with physiological post-operative loading and boundary conditions. In a systematic comparison, the material properties of titanium alloy Ti-6Al-4V, magnesium alloy WE43, and polylactic acid (PLA) were assigned to the fixation devices, and two different plate thicknesses were tested. No failure was predicted in the fixation devices for any of the tested materials. Moreover, the magnesium and titanium fixation devices induced a similar amount of strain within the healing regions. On the other hand, the PLA devices led to higher mechanical strains within the healing region. Plate thickness only slightly influenced the primary fixation stability. Therefore, magnesium alloy WE43 fixation devices seem to provide a suitable biomechanical environment to support mandibular fracture healing in the early stages of bone healing. Magnesium WE43 showed a biomechanical performance similar to clinically used titanium devices with the added advantages of biodegradability and radiopacity, and at the same time it showed a remarkably higher primary stability compared to PLA fixation devices, which appear to be too unstable, especially in the posterior and more loaded mandibular fracture cases.

6.
Front Bioeng Biotechnol ; 9: 672176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026745

RESUMO

Mandibular fracture fixation and reconstruction are usually performed using titanium plates and screws, however, there is a need to improve current fixation techniques. Animal models represent an important step for the testing of new designs and materials. However, the validity of those preclinical models in terms of implant biomechanics remains largely unknown. In this study, we investigate the biomechanics of the sheep mandible as a preclinical model for testing the mechanical strength of fixation devices and the biomechanical environment induced on mandibular fractures. We aimed to assess the comparability of the biomechanical conditions in the sheep mandible as a preclinical model for human applications of fracture fixation devices and empower analyses of the effect of such defined mechanical conditions on bone healing outcome. We developed 3D finite element models of the human and sheep mandibles simulating physiological muscular loads and three different clenching tasks (intercuspal, incisal, and unilateral). Furthermore, we simulated fractures in the human mandibular body, sheep mandibular body, and sheep mandibular diastema fixated with clinically used titanium miniplates and screws. We compared, at the power stroke of mastication, the biomechanical environment (1) in the healthy mandibular body and (2) at the fracture sites, and (3) the mechanical solicitation of the implants as well as the mechanical conditions for bone healing in such cases. In the healthy mandibles, the sheep mandibular body showed lower mechanical strains compared to the human mandibular body. In the fractured mandibles, strains within a fracture gap in sheep were generally not comparable to humans, while similar or lower mechanical solicitation of the fixation devices was found between the human mandibular body fracture and the sheep mandibular diastema fracture scenarios. We, therefore, conclude that the mechanical environments of mandibular fractures in humans and sheep differ and our analyses suggest that the sheep mandibular bone should be carefully re-considered as a model system to study the effect of fixation devices on the healing outcome. In our analyses, the sheep mandibular diastema showed similar mechanical conditions for fracture fixation devices to those in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA