Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 286(24): 21231-8, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21527639

RESUMO

Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.


Assuntos
Retículo Endoplasmático/metabolismo , Bicamadas Lipídicas/química , Ricina/química , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Epitopos/química , Glicosídeo Hidrolases/química , Humanos , Focalização Isoelétrica , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Dobramento de Proteína , alfa 1-Antitripsina/química
2.
Exp Cell Res ; 316(13): 2113-22, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20430023

RESUMO

ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-kappaB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6(M241T) and US2, but not the soluble degradation substrate alpha(1)-antitrypsin null(HK). These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , alfa 1-Antitripsina/metabolismo , Western Blotting , Células Cultivadas , Humanos , Rim/citologia , Rim/metabolismo , Luciferases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resposta a Proteínas não Dobradas/fisiologia
3.
Biosci Rep ; 29(3): 173-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18811591

RESUMO

NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized. To explore a possible link between ER quality control and processing of Cln mutants, we investigated the fate of two NCL-related Cln6 mutants found in patient samples (Cln6(G123D) and Cln6(M241T)) in neuronal-derived human cells. The point mutations are predicted to be in the putative transmembrane domains and most probably generate misfolded membrane proteins that are subjected to ER quality control. Consistent with this paradigm, both mutants underwent rapid proteasome-mediated degradation and complexed with components of the ER extraction apparatus, Derlin-1 and p97. In addition, knockdown of SEL1L [sel-1 suppressor of lin-12-like (Caenorhabditis elegans)], a member of an E3 ubiquitin ligase complex involved in ER protein extraction, rescued significant amounts of Cln6(G123D) and Cln6(M241T) polypeptides. The results implicate ER quality control in the instability of the Cln variants that probably contributes to the development of NCL.


Assuntos
Proteínas de Membrana/metabolismo , Mutação , Lipofuscinoses Ceroides Neuronais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas/genética , Ubiquitina-Proteína Ligases/genética
4.
J Biol Chem ; 284(9): 5905-14, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19121997

RESUMO

The human cytomegalovirus proteins US2 and US11 have co-opted endoplasmic reticulum (ER) quality control to facilitate the destruction of major histocompatibility complex class I heavy chains. The class I heavy chains are dislocated from the ER to the cytosol, where they are deglycosylated and subsequently degraded by the proteasome. We examined the role of TRAM1 (translocating chain-associated membrane protein-1) in the dislocation of class I molecules using US2- and US11-expressing cells. TRAM1 is an ER protein initially characterized for its role in processing nascent polypeptides. Co-immunoprecipitation studies demonstrated that TRAM1 can complex with the wild type US2 and US11 proteins as well as deglycosylated and polyubiquitinated class I degradation intermediates. In studies using US2- and US11-TRAM1 knockdown cells, we observed an increase in levels of class I heavy chains. Strikingly, increased levels of glycosylated heavy chains were observed in TRAM1 knockdown cells when compared with control cells in a pulse-chase experiment. In fact, US11-mediated class I dislocation was more sensitive to the lack of TRAM1 than US2. These results provide further evidence that these viral proteins may utilize distinct complexes to facilitate class I dislocation. For example, US11-mediated class I heavy chain degradation requires Derlin-1 and SEL1L, whereas signal peptide peptidase is critical for US2-induced class I destabilization. In addition, TRAM1 can complex with the dislocation factors Derlin-1 and signal peptide peptidase. Collectively, the data support a model in which TRAM1 functions as a cofactor to promote efficient US2- and US11-dependent dislocation of major histocompatibility complex class I heavy chains.


Assuntos
Astrocitoma/metabolismo , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Glicosilação , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Proteínas do Envelope Viral/genética , Proteínas Virais/genética
5.
J Gen Virol ; 89(Pt 5): 1122-1130, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18420789

RESUMO

Inhibition of cell-surface expression of major histocompatibility complex class I molecules by human cytomegalovirus (HCMV, a beta-herpesvirus) promotes escape from recognition by CD8+ cytotoxic T cells. The HCMV US2 and US11 gene products induce class I downregulation during the early phase of HCMV infection by facilitating the degradation of class I heavy chains. The HCMV proteins promote the transport of the class I heavy chains across the endoplasmic reticulum (ER) membrane into the cytosol by a process referred to as 'dislocation', which is then followed by proteasome degradation. This process has striking similarities to the degradation of misfolded ER proteins mediated by ER quality control. Even though the major steps of the dislocation reaction have been characterized, the cellular proteins, specifically the ER chaperones involved in targeting class I for dislocation, have not been fully delineated. To elucidate the chaperones involved in HCMV-mediated class I dislocation, we utilized a chimeric class I heavy chain with an affinity tag at its carboxy terminus. Interestingly, US2 but not US11 continued to target the class I chimera for destruction, suggesting a structural limitation for US11-mediated degradation. Association studies in US2 cells and in cells that express a US2 mutant, US2-186HA, revealed that class I specifically interacts with calnexin, BiP and calreticulin. These findings demonstrate that US2-mediated class I destruction utilizes specific chaperones to facilitate class I dislocation. The data suggest a more general model in which the chaperones that mediate protein folding may also function during ER quality control to eliminate aberrant ER proteins.


Assuntos
Citomegalovirus/fisiologia , Retículo Endoplasmático/enzimologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Envelope Viral/metabolismo , Calnexina/metabolismo , Calreticulina/metabolismo , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de Proteínas
6.
J Biol Chem ; 281(28): 19395-406, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16687410

RESUMO

Human cytomegalovirus down-regulates cell surface class I major histocompatibility (MHC) molecules, thus allowing the virus to proliferate while avoiding detection by CD8+ T lymphocytes. The unique short gene product US2 is a 199-amino acid type I endoplasmic reticulum glycoprotein that modulates surface expression of class I MHC products by targeting class I heavy chains for dislocation from the endoplasmic reticulum to the cytosol, where they undergo proteasomal degradation. Although the mechanism by which this viral protein targets class I heavy chains for destruction remains unclear, the putative US2 cytoplasmic tail comprised of only 14 residues is known to play a functional role. To determine the specific residues critical for mediating class I degradation, a mutagenesis analysis of the cytoplasmic tail of US2 was performed. Using truncation mutants, the removal of only 4 residues (mutant US2(195)) from the US2 carboxyl terminus completely abolishes class I destruction. Furthermore, site-directed mutagenesis of the US2 cytoplasmic tail revealed that the most critical residues for class I-induced destruction, cysteine 187, serine 190, tryptophan 193, and phenylalanine 196, occurs every third residue. This experimental data supports a model that the US2 cytoplasmic tail is in a 3(10) helical configuration. Such a secondary structure would predict that one side of the 3(10) helical cytoplasmic tail would interact with the extraction apparatus to facilitate the dislocation and subsequent destruction of class I heavy chains.


Assuntos
Citomegalovirus/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/biossíntese , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/fisiologia , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genes MHC Classe I , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína
7.
Biol Chem ; 383(7-8): 1035-44, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12437086

RESUMO

Apoptosis or programmed cell death is the major mechanism used by multicellular organisms to remove infected, excessive and potentially dangerous cells. Cysteine proteases from the caspase family play a crucial role in the process. However, there is increasing evidence that lysosomal proteases are also involved in apoptosis. In this review various lysosomal proteases and their potential contribution to propagation of apoptosis are discussed.


Assuntos
Apoptose , Endopeptidases/fisiologia , Proteínas/fisiologia , Animais , Humanos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biol Chem ; 279(5): 3578-87, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14581476

RESUMO

Increasing evidence suggests that lysosomal proteases are actively involved in apoptosis. Using HeLa cells as the model system, we show that selective lysosome disruption with L-leucyl-L-leucine methyl ester results in apoptosis, characterized by translocation of lysosomal proteases into the cytosol and by the cleavage of a proapoptotic Bcl-2-family member Bid. Apoptosis and Bid cleavage, but not translocation of lysosomal proteases to the cytosol, could be prevented by 15 microM L-trans-epoxysuccinyl(OEt)-Leu-3-methylbutylamide, an inhibitor of papain-like cysteine proteases. Incubation of cells with 15 microM N-benzoyloxycarbonyl-VAD-fluoromethyl ketone prevented apoptosis but not Bid cleavage, suggesting that cathepsin-mediated apoptosis in this system is caspase-dependent. In vitro experiments performed at neutral pH showed that papain-like cathepsins B, H, L, S, and K cleave Bid predominantly at Arg(65) or Arg(71). No Bid cleavage was observed with cathepsins C and X or the aspartic protease cathepsin D. Incubation of full-length Bid treated with cathepsins B, H, L, and S resulted in rapid cytochrome c release from isolated mitochondria. Thus, Bid may be an important mediator of apoptosis induced by lysosomal disruption.


Assuntos
Apoptose , Proteínas de Transporte/fisiologia , Catepsinas/metabolismo , Lisossomos/metabolismo , Papaína/química , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/metabolismo , Caspase 8 , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citosol/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Fígado/metabolismo , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Miocárdio/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes/metabolismo , Temperatura , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA