RESUMO
The expression "lost at sea" means to be confused or perplexed. By extension, lost at SCLC references the current confusion about how to circumvent the chemoresistance, particularly platinum resistance, which so plagues the treatment of extensive-stage small cell lung cancer (ES-SCLC) that in 2012 the US National Cancer Institute (NCI) designated it a "recalcitrant cancer." Over a decade later, despite the approval of immune checkpoint inhibitors and the conditional approval of lurbinectedin, the prognosis for ES-SCLC, and especially platinum-resistant ES-SCLC, has scarcely improved. The focus of this review, which briefly summarizes current treatment options for ES-SCLC, is on five clinical-stage therapies with the potential to successfully reverse the platinum resistance that is perhaps the biggest obstacle to better clinical outcomes.
RESUMO
BACKGROUND: Breast cancer is the second leading cause of death in women, with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) as the two most common forms of invasive breast cancer. While estrogen receptor positive (ER+) IDC and ILC are treated similarly, the multifocality of ILC presents challenges in detection and treatment, worsening long-term clinical outcomes in patients. With increasing documentation of chemoresistance in ILC, additional treatment options are needed. Oncolytic adenoviral therapy may be a promising option, but cancer cells must express the coxsackievirus & adenovirus receptor (CAR) for adenoviral therapy to be effective. The present study aims to evaluate the extent to which CAR expression is observed in ILC in comparison to IDC, and how the levels of CAR expression correlate with adenovirus transduction efficiency. The effect of liposome encapsulation on transduction efficiency is also assessed. METHODS: To characterize CAR expression in invasive breast carcinoma, 36 formalin-fixed paraffin-embedded (FFPE) human breast tumor samples were assayed by CAR immunohistochemistry (IHC). Localization of CAR in comparison to other junctional proteins was performed using a multiplex immunofluorescence panel consisting of CAR, p120-catenin, and E-cadherin. ILC and IDC primary tumors and cell lines were transduced with E1- and E3-deleted adenovirus type 5 inserted with a GFP transgene (Ad-GFP) and DOTAP liposome encapsulated Ad-GFP (DfAd-GFP) at various multiplicities of infection (MOIs). Transduction efficiency was measured using a fluorescence plate reader. CAR expression in the human primary breast carcinomas and cell lines was also evaluated by IHC. RESULTS: We observed membranous CAR, p120-catenin and E-cadherin expression in IDC. In ILC, we observed cytoplasmic expression of CAR and p120-catenin, with absent E-cadherin. Adenovirus effectively transduced high-CAR IDC cell lines, at MOIs as low as 12.5. Ad-GFP showed similar transduction as DfAd-GFP in high-CAR IDC cell lines. Conversely, Ad-GFP transduction of ILC cell lines was observed only at MOIs of 50 and 100. Furthermore, Ad-GFP did not transduce CAR-negative IDC cell lines even at MOIs greater than 100. Liposome encapsulation (DfAd-GFP) improved transduction efficiency 4-fold in ILC and 17-fold in CAR-negative IDC cell lines. CONCLUSION: The present study demonstrates that oncolytic adenoviral therapy is less effective in ILC than IDC due to differences in spatial CAR expression. Liposome-enhanced delivery may be beneficial for patients with ILC and tumors with low or negative CAR expression to improve adenoviral therapeutic effectiveness.
Assuntos
Adenoviridae , Neoplasias da Mama , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Transdução Genética , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adenoviridae/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Linhagem Celular Tumoral , Carcinoma Lobular/metabolismo , Carcinoma Lobular/terapia , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Caderinas/metabolismo , Caderinas/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , LipossomosRESUMO
AdAPT-001 is an investigational therapy consisting of a replicative type 5 adenovirus armed with a TGF-ß receptor-immunoglobulin Fc fusion trap, designed to neutralize isoforms 1 and 3 of the profibrotic and immunosuppressive cytokine, TGF-ß. In preclinical studies with an immunocompetent mouse model, AdAPT-001 eradicated directly treated 'cold' tumors as well as distant untreated tumors, and, from its induction of systemic CD8+ T cell-mediated antitumor immunity, protected the mice from rechallenge with tumor cells. AdAPT-001 also sensitized resistant tumors to checkpoint blockade. This manuscript describes the rationale and design of the first-in-human phase I, dose-escalation and dose-expansion study of AdAPT-001 alone and in combination with a checkpoint inhibitor in adults with treatment-refractory superficially accessible solid tumors.
The purpose of this study is to find out more about the experimental oncolytic virus called AdAPT-001 that has been designed to selectively eliminate cancer cells. The virus is also designed to make a particular protein called a TGF-ß trap, which neutralizes TGF-ß, an overproduced chemical in cancer cells that puts the immune system into a comatose state. This article discusses a clinical trial called BETA PRIME for patients with no other standard treatment options. The trial will explore different doses of AdAPT-001 both alone and in combination with an approved checkpoint inhibitor or another immunotherapy, which blocks the 'off' signal on immune cells, to determine the safest and best dose. Clinical Trial Registration: NCT04673942 (ClinicalTrials.gov).
Assuntos
Neoplasias , Terapia Viral Oncolítica , Animais , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Citocinas , Humanos , Imunoglobulinas , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador betaRESUMO
RRx-001 is a small molecule NLRP3 inflammasome inhibitor with anti-CD47 and antiangiogenic/vascular normalization properties in a Phase 3 clinical trial that has been designated as a drug-device combination by the FDA. In the Phase 1 first-in-man dose escalation clinical trial, where RRx-001 was given by direct intravenous (IV) infusion, the main adverse event was a sterile painful infusion phlebitis (IP). Less pain was experienced when RRx-001 was infused at a slower rate over multiple hours which was impractical on an outpatient basis. In Phase 2, for reasons of convenience and safety, RRx-001 was co-administered with an aliquot of autologous blood from an ex-vivo device called the eLOOP on the premise that RRx-001 binds to hemoglobin on red blood cells (RBCs), making it unavailable to directly interact with venous nociceptors. Phlebitis has the potential to progress to deep venous thrombosis or septic thrombophlebitis or post-thrombotic syndrome in hypercoagulable and immunosuppressed cancer patients. In this 13-week toxicology study of once weekly IV RRx-001 administration to Wistar Han rats followed by a recovery period of 28 days. The main observed toxicity was a significant inflammatory response in the vein wall, consistent with superficial venous thrombosis observed in man. Due to this development, direct IV infusion of RRx-001 is relatively contraindicated in favor of co-administration with autologous blood.
Assuntos
Inflamassomos , Flebite , Animais , Azetidinas , Hemoglobinas/metabolismo , Inflamação/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nitrocompostos , Ratos , Ratos WistarRESUMO
In medicine, inflammation is a fuzzy, overused word first coined by the Romans, the intended meaning and precise definition of which varies according to the person and the clinical context. It tends to carry a negative connotation as a response gone awry, like a raging, out-of-control wildfire that requires immediate control and containment lest it destroy all in its path; however, frequently overlooked or lost in the shuffle is the primordial importance of inflammation to health and survival. The precise definition of inflammation matters for several reasons, not least because of the over-liberal use of anti-inflammatory drugs to inhibit inflammation, which may, contrary to prevailing dogma that all inflammation is harmful, act counterproductively to prevent restitutio ad integrum. Using fire as a central analogy, this overview attempts to define inflammation, the better to determine how to manage it, i.e., whether to fan its flames, let it burn out, or suppress it entirely.
Assuntos
Imunidade Inata , Inflamação , HumanosRESUMO
Red blood cells (RBCs) serve a variety of functions beyond mere oxygen transport both in health and pathology. Notably, RRx-001, a minimally toxic pleiotropic anticancer agent with macrophage activating and vascular normalization properties currently in Phase III trials, induces modification to RBCs which could promote vascular adhesion similar to sickle cells. This study assessed whether RBCs exposed to RRx-001 adhere to the tumor microvasculature and whether this adhesion alters tumor viability. We next investigated the biomechanics of RBC adhesion in the context of local inflammatory cytokines after treatment with RRx-001 as a potential mechanism for preferential tumor aggregation. Human HEP-G2 and HT-29 tumor cells were subcutaneously implanted into nu/nu mice and were infused with RRx-001-treated and Technetium-99m (99mTc)-labeled blood. RBC adhesion was quantified in an in vitro human umbilical vein endothelial cell (HUVEC) assay under both normoxic and hypoxic conditions with administration of either lipopolysaccharide (LPS) or Tumor necrosis alpha (TNFα) to mimic the known inflammation in the tumor microenvironment. One hour following administration of 99mTc labeled RBCs treated with 10 mg/kg RRx-001, we observed an approximate 2.0-fold and 1.5-fold increase in 99mTc-labeled RBCs compared to vehicle control in HEPG2 and HT-29 tumor models, respectively. Furthermore, we observed an approximate 40% and 36% decrease in HEP-G2 and HT-29 tumor weight, respectively, following treatment with RRx-001. To quantify RBC adhesive potential, we determined τ50, or the shear stress required for 50% disassociation of RBCs from HUVECs. After administration of TNF-α under normoxia, τ50 was determined to be 4.5 dynes/cm2 (95% CI: 4.3-4.7 dynes/cm2) for RBCs treated with 10 µM RRx-001, which was significantly different (p < 0.05) from τ50 in the absence of treatment. Under hypoxic conditions, the difference of τ50 with (4.8 dynes/cm2; 95% CI: 4.6-5.1 dynes/cm2) and without (2.6 dynes/cm2; 95% CI: 2.4-2.8 dynes/cm2) 10 µM RRx-001 treatment was exacerbated (p = 0.05). In conclusion, we demonstrated that RBCs treated with RRx-001 preferentially aggregate in HEP-G2 and HT-29 tumors, likely due to interactions between RRx-001 and cysteine residues within RBCs. Furthermore, RRx-001 treated RBCs demonstrated increased adhesive potential to endothelial cells upon introduction of TNF-α and hypoxia suggesting that RRx-001 may induce preferential adhesion in the tumor but not in other tissues with endothelial dysfunction due to conditions prevalent in older cancer patients such as heart disease or diabetic vasculopathy.
Assuntos
Antineoplásicos/farmacologia , Azetidinas/farmacologia , Células Endoteliais/citologia , Membrana Eritrocítica/efeitos dos fármacos , Nitrocompostos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Azetidinas/uso terapêutico , Adesão Celular/efeitos dos fármacos , Hipóxia Celular , Cisteína/química , Citocinas/metabolismo , Células Endoteliais/química , Agregação Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/química , Células HT29/transplante , Células Hep G2/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/farmacologia , Lipídeos de Membrana/biossíntese , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/tratamento farmacológico , Nitrocompostos/uso terapêutico , Fosfatidilserinas/biossíntese , Receptores de Superfície Celular/biossíntese , Resistência ao Cisalhamento , Microambiente Tumoral , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Anthracycline chemotherapy (e.g., doxorubicin or DOX) is associated with a cumulative dose-dependent cardiac dysfunction that may lead to congestive heart failure, which limits both its use and usefulness in the clinic. The cardiotoxicity may manifest acutely and/or months or years after treatment with doxorubicin has ended. Experimental and human data have demonstrated that angiotensin-converting enzyme/angiotensin-receptor antagonists mediate a cardioprotective effect against anthracycline toxicity. In this study, with the angiotensin receptor blocker, candesartan, as a positive control, we evaluated whether pretreatment with the hypoxic nitric oxide generating anticancer agent, RRx-001, could reduce acute DOX-induced cardiotoxicity. A total of 24 BALB/c mice were randomized for prophylactic treatment with vehicle, RRx-001, candesartan, or no-intervention control. Within each of the three intervention arms, mice received treatment with DOX. Murine pressure-volume analysis was performed with microconductance catheters to characterize the degree of cardiovascular dysfunction within each group. The following hemodynamic parameters were monitored: left ventricular systolic pressure (LVSP), heart rate, and maximal rate of increase of left ventricular pressure (±d P/d tmax). Five days after doxorubicin injection, untreated (with RRx-001) mice displayed significantly impaired systolic (LVSP, -27%; d P/d tmax, -25%; left ventricular developed pressure (LVDP), +33%; P < 0.05) and global (stroke volume (SV), -52%; ejection fraction (EF), -20%; stroke work (SW), -62.5%; heart rate (HR), -18%; cardiac output (CO), -57%; mean blood arterial pressure (MAP), -30%; systemic vascular resistance (SVR), +20%; P < 0.05) LV functions when compared with the untreated (with RRx-001) group. In contrast, RRx-001-treated mice showed improved variables of systolic (LVSP, +27%; d P/d tmax, +25%; LVDP, -33%; P < 0.05) and global (SV, +52%; EF, +20%; SW, +62.5%; HR, +18%; CO, +57%; MAP, +30%; SVR, -20%; P < 0.05) LV functions compared with untreated doxorubicin mice. Similar to the positive control, candesartan, the cardiotoxic effects of DOX in mice were partially attenuated by the prophylactic administration of RRx-001. These results suggest that RRx-001 as a multifunctional anticancer agent, which sensitizes cancer cells to the cytotoxic effects of chemotherapy and radiation, may also have beneficial cardioprotective effects.
Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Azetidinas/uso terapêutico , Cardiomiopatias/induzido quimicamente , Cardiotônicos/uso terapêutico , Doxorrubicina/toxicidade , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Nitrocompostos/uso terapêutico , Doença Aguda , Animais , Antibióticos Antineoplásicos/administração & dosagem , Azetidinas/administração & dosagem , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/administração & dosagem , Cardiotoxicidade , Doxorrubicina/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nitrocompostos/administração & dosagem , Distribuição Aleatória , Volume Sistólico/efeitos dos fármacos , Tetrazóis/uso terapêuticoRESUMO
RRx-001 is a cysteine-directed anticancer alkylating agent with activity in a Phase II study in platinum refractory small cell lung cancer. Here, we describe the design of REPLATINUM, an open-label, Phase III trial. 120 patients with previously platinum-treated small cell lung cancer in third line will be randomized 1:1 to receive RRx-001 followed by four cycles of a platinum doublet, and then alternating cycles of RRx-001 and single agent platinum until progression versus four cycles of a platinum doublet. At radiologic progression on the platinum doublet, patients may cross over to the RRx-001 arm. Primary objective: to demonstrate superior progression-free survival in the RRx-001 population. Secondary objectives: to demonstrate superiority for overall survival and objective response rate. Clinical Trial registration: NCT03699956.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Azetidinas/administração & dosagem , Carboplatina/administração & dosagem , Cisplatino/administração & dosagem , Etoposídeo/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nitrocompostos/administração & dosagem , Resultado do Tratamento , Adulto JovemRESUMO
The platelet inhibitory effects of the Phase 3 anticancer agent and nitric oxide (NO) donor, RRx-001, (1-bromoacetyl-3,3-dinitroazetidine) were examined ex vivo and compared with the diazeniumdiolate NO donor, diethylenetriamine NONOate (DETA-NONOate), which spontaneously releases nitric oxide in aqueous solution. In the absence of red blood cells and in a dose-dependent manner, DETA-NONOate strongly inhibited platelet aggregation induced by several stimuli (ADP, epinephrine and collagen) whereas RRx-001 only slightly inhibited platelet aggregation under the same conditions in a dose-dependent manner; these antiaggregant effects were blocked when both DETA-NONOate and RRx-001 were co-incubated with carboxy-PTIO (CPTIO 0.01-100 micromol), a widely accepted NO scavenger. However, in the presence of red blood cells from healthy human donors, RRx-001, which binds covalently to haemoglobin (Hb) and catalyses the production of NO from endogenous nitrite, more strongly inhibited the aggregation of platelets than DETA-NONOate in a dose-dependent manner likely because haemoglobin avidly scavenges nitric oxide and reduces its half-life; the RRx-001-mediated platelet inhibitory effect was increased in the presence of nitrite. The results of this study suggest that RRx-001-bound Hb (within RBCs) plays an important role in the bioconversion of NO2- to NO. , which makes RRx-001 a more physiologically relevant inhibitor of platelet aggregation than other nitric oxide donors, whose effects are attenuated in the presence of red blood cells. Therefore, RRx-001-mediated platelet inhibition is a potentially useful therapeutic property, especially in hypercoagulable cancer patients that are at an increased risk of thrombotic complications.
Assuntos
Azetidinas/farmacologia , Plaquetas/efeitos dos fármacos , Hemoglobinas/metabolismo , Neoplasias/sangue , Nitrocompostos/farmacologia , Adulto , Plaquetas/patologia , Colágeno/genética , GMP Cíclico/sangue , Eritrócitos/efeitos dos fármacos , Feminino , Hemoglobinas/efeitos dos fármacos , Humanos , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óxido Nítrico/sangue , Doadores de Óxido Nítrico/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Trombofilia/sangue , Trombofilia/patologiaRESUMO
The 'holy grail' in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizer-a systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent "fixation" of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews.
Assuntos
Azetidinas/administração & dosagem , Neoplasias/terapia , Nitrocompostos/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Azetidinas/farmacologia , Humanos , Neoplasias/patologia , Nitrocompostos/farmacologia , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Epigenetic alterations have been strongly associated with tumour formation and resistance to chemotherapeutic drugs, and epigenetic modifications are an attractive target in cancer research. RRx-001 is activated by hypoxia and induces the generation of reactive oxygen and nitrogen species that can epigenetically modulate DNA methylation, histone deacetylation, and lysine demethylation. The aim of this phase 1 study was to assess the safety, tolerability, and pharmacokinetics of RRx-001. METHODS: In this open-label, dose-escalation, phase 1 study, we recruited adult patients (aged >18 years) with histologically or cytologically confirmed diagnosis of advanced, malignant, incurable solid tumours from University of California at San Diego, CA, USA, and Sarah Cannon Research Institute, Nashville, TN, USA. Key eligibility criteria included evaluable disease, Eastern Cooperative Group performance status of 2 or less, an estimated life expectancy of at least 12 weeks, adequate laboratory parameters, discontinuation of all previous antineoplastic therapies at least 6 weeks before intervention, and no residual side-effects from previous therapies. Patients were assigned to receive intravenous infusions of RRx-001 at increasing doses (10 mg/m(2), 16·7 mg/m(2), 24·6 mg/m(2), 33 mg/m(2), 55 mg/m(2), and 83 mg/m(2)) either once or twice-weekly for at least 4 weeks, with at least three patients per dose cohort and allowing a 2-week observation period before dose escalation. Samples for safety and pharmacokinetics analysis, including standard chemistry and haematological panels, were taken on each treatment day. The primary objective was to assess safety, tolerability, and dose-limiting toxic effects of RRx-001, to determine single-dose pharmacokinetics, and to identify a recommended dose for phase 2 trials. All analyses were done per protocol. Accrual is complete and follow-up is still on-going. This trial is registered with ClinicalTrials.gov, number NCT01359982. FINDINGS: Between Oct 10, 2011, and March 18, 2013, we enrolled 25 patients and treated six patients in the 10 mg/m(2) cohort, three patients in the 16·7 mg/m(2) cohort, three patients in the 24·6 mg/m(2) cohort, four patients in the 33 mg/m(2) cohort, three patients in the 55 mg/m(2), and six patients in the 83 mg/m(2) cohort. Pain at the injection site, mostly grade 1 and grade 2, was the most common adverse event related to treatment, experienced by 21 (84%) patients. Other common drug-related adverse events included arm swelling or oedema (eight [32%] patients), and vein hardening (seven [28%] patients). No dose-limiting toxicities were observed. Time constraints related to management of infusion pain from RRx-001 resulted in a maximally feasible dose of 83 mg/m(2). Of the 21 evaluable patients, one (5%) patient had a partial response, 14 (67%) patients had stable disease, and six (29%) patients had progressive disease; all responses were across a variety of tumour types. Four patients who had received RRx-001 were subsequently rechallenged with a treatment that they had become refractory to; all four responded to the rechallenge. INTERPRETATION: RRx-001 is a well-tolerated novel compound without clinically significant toxic effects at the tested doses. Preliminary evidence of activity is promising and, on the basis of all findings, a dose of 16·7 mg/m(2) was recommended as the targeted dose for phase 2 trials. FUNDING: EpicentRx (formerly RadioRx).
Assuntos
Azetidinas/administração & dosagem , Epigênese Genética/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Nitrocompostos/administração & dosagem , Adulto , Idoso , Azetidinas/efeitos adversos , Azetidinas/farmacocinética , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Epigênese Genética/genética , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacocinética , Prognóstico , Resultado do TratamentoRESUMO
BACKGROUND: The survival of malaria parasites, under substantial haem-induced oxidative stress in the red blood cells (RBCs) is dependent on the pentose phosphate pathway (PPP). The PPP is the only source of NADPH in the RBC, essential for the production of reduced glutathione (GSH) and for protection from oxidative stress. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, therefore, increases the vulnerability of erythrocytes to oxidative stress. In Plasmodium, G6PD is combined with the second enzyme of the PPP to create a unique bifunctional enzyme, named glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (G6PD-6PGL). RRx-001 is a novel, systemically non-toxic, epigenetic anticancer agent currently in Phase 2 clinical development for multiple tumour types, with activity mediated through increased nitric oxide (NO) production and PPP inhibition. The inhibition of G6PD and NO overproduction induced by RRx-001 suggested its application in cerebral malaria (CM). METHODS: Plasmodium berghei ANKA (PbA) infection in C57BL/6 mice is an experimental model of cerebral malaria (ECM) with several similar pathological features to human CM. This study uses intravital microscopy methods with a closed cranial window model to quantify cerebral haemodynamic changes and leukocyte adhesion to endothelial cells in ECM. RESULTS: RRx-001 had both single agent anti-parasitic activity and significantly increased the efficacy of artemether. In addition, RRx-001 preserved cerebral perfusion and reduced inflammation alone or combined with artemether. RRx-001's effects were associated with inhibition of PPP (G6PD and G6PD-6PGL) and by improvements in microcirculatory flow, which may be related to the NO donating properties of RRx-001. CONCLUSION: The results indicate that RRx-001 could be used to potentiate the anti-malarial action of artemisinin, particularly on resistant strains, and to prevent infection.
Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Azetidinas/uso terapêutico , Malária Cerebral/tratamento farmacológico , Nitrocompostos/uso terapêutico , Plasmodium berghei/efeitos dos fármacos , Animais , Artemeter , Hidrolases de Éster Carboxílico/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Glucosefosfato Desidrogenase/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Parasitemia/tratamento farmacológicoRESUMO
Selective release of nitric oxide (NO) in tumors could improve the tumor blood flow and drug delivery for chemotherapeutic agents and radiotherapy, thereby increasing the therapeutic index. Glycidyl nitrate (GLYN) is a NO generating small molecule, and has ability to release NO on bioactivation in SCC VII tumor cells. GLYN-induced intracellular NO generation was significantly attenuated by NO scavenger carboxy-PTIO (cPTIO) and NAC. GLYN significantly increases tumor blood flow, but has no effect on the blood flow of normal tissues in tumor-bearing mice. When used with cisplatin, GLYN significantly increased the tumor growth inhibition effect of cisplatin. GLYN also had a modest radiosensitizing effect in vitro and in vivo. GLYN was well tolerated and there were no acute toxicities found at its effective therapeutic doses in preclinical studies. These results suggest that GLYN is a promising new drug for use with chemotherapy and radiotherapy, and provide a compelling rationale for future studies of GLYN and related compounds.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Epóxi/uso terapêutico , Neoplasias/terapia , Nitratos/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico/metabolismo , Radiossensibilizantes/uso terapêutico , Fluxo Sanguíneo Regional/efeitos dos fármacos , Animais , Benzoatos/farmacologia , Linhagem Celular Tumoral , Células HT29 , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/radioterapiaRESUMO
At the ASCO 2024 meeting, Anthony P Conley, coauthor on this editorial, presented promising data from the phase 1/2 clinical trial called BETA PRIME (ClinicalTrials.gov NCT04673942) with AdAPT-001 plus a checkpoint inhibitor (CI). All participants gave informed consent to participate in BETA PRIME before taking part. AdAPT-001 is an oncolytic adenovirus that expresses a transforming growth factor beta (TGF-ß) trap to neutralize active TGF-ß. This editorial proposes that the TGF-ß trap of AdAPT-001 reverses the immunosuppressive environment of tumor cells, and thus makes these tumors susceptible to CIs like the anti-PD-1 agent, nivolumab, and potentially other therapies as well.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Fator de Crescimento Transformador beta , Humanos , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como AssuntoRESUMO
The purpose of this commentary is to highlight the high occurrence of clinical pseudoprogression and delayed responses that have been observed to date with the locally injected oncolytic adenovirus, AdAPT-001, currently in a Phase 1/2 clinical trial (NCT04673942) for the treatment of treatment-refractory tumors. Not surprisingly, these have led to confusion about response assessment and whether to continue patients on treatment. AdAPT-001 carries a transforming growth factor (TGF)-beta trap (TGF-ß), which sequesters TGF-ß, a cytokine that potently regulates inflammation, fibrosis, and immunosuppression in cancer. Pseudoprogression (PsP) or progression prior to response or stabilization, has been widely recognized with radiotherapy for primary brain tumors and immune checkpoint inhibitors (ICIs). PsP has also been described and documented in the context of oncolytic virotherapy but perhaps to a lesser extent. However, repeated intratumoral injections with these immunostimulatory agents may induce a more intense immune response and release more antigenic epitopes than with ICIs, for example, which are strictly T-cell directed rather than also tumor-directed like AdAPT-001.
Assuntos
Progressão da Doença , Terapia Viral Oncolítica , Humanos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , AdenoviridaeRESUMO
AdAPT-001 is an oncolytic adenovirus (OAV) with a transforming growth factor beta (TGF-ß) trap, which neutralizes the immunosuppressive and profibrotic cytokine, TGF-ß. The aim or purpose of this phase 1 study was to assess the safety and tolerability and, secondarily, the efficacy of AdAPT-001 after single intratumoral injection (IT) (Part 1) and multidose IT injection (Part 2) in patients with superficially accessible, advanced refractory solid tumors. Part 1 enrolled 9 patients with a 3 + 3 single dose-escalation safety run-in involving 2.5 × 1011, 5.0 × 1011, 1.0 × 1012 viral particles (vps). No dose-limiting toxicities or treatment-related serious adverse events (SAEs) were seen. In Part 2, a dose-expansion phase, 19 patients received AdAPT-001 at 1.0 × 1012 vps until disease progression according to Response Evaluation Criteria in Solid Tumors or RECIST 1.1. The overall responses to treatment included confirmed partial responses (3), durable stable disease ≥ 6 months (5), and progressive disease (13). AdAPT-001 is well tolerated. Evidence of an anti-tumor effect was seen in both injected and uninjected lesions. The recommended Phase 2 dose was 1.0 × 1012 vp administered by intratumoral injection once every 2 weeks. Combination of AdAPT-001 with a checkpoint inhibition is enrolling.
Assuntos
Infecções por Adenoviridae , Neoplasias , Humanos , Adenoviridae/genética , Neoplasias/patologia , Critérios de Avaliação de Resposta em Tumores SólidosRESUMO
Whither oncolytic viruses? From the peak of their popularity in the early 2000s, when the ONYX-015 adenovirus had just entered the clinic, and then again in 2015 when the Food and Drug Administration-approved talimogene laherparepvec (also known as OncoVEXGM-CSF), which briefly revived interest, oncolytic viruses (OVs) have mostly fallen out of favor despite the many pharmaceutical companies with OVs in development.This commentary enumerates and addresses the core conceptions, perceptions, and misconceptions that characterize the current 'trough of disillusionment' in which the field of anticancer virotherapy finds itself and suggests reasons for optimism.
Assuntos
Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Estados Unidos , Humanos , Vírus Oncolíticos/genética , Melanoma/terapiaRESUMO
Despite an ever-increasing need for newer, safer, more effective, and more affordable therapies to treat a multitude of diseases and conditions, drug development takes too long, costs too much, and is too uncertain to be undertaken without the conferment of exclusionary rights or entry barriers to motivate and sustain investment in it. These entry barriers take the form of patents that protect intellectual property and marketing exclusivity provisions that are provided by statute. This review focuses on the basic ins and outs of regulatory and patent exclusivities for which new chemical entities (NCEs), referring to never-before approved drugs with an entirely new active ingredient, are eligible and uses RRx-001, a small molecule aerospace-derived NCE in development for the treatment of cancer, radiation toxicity, and diseases of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, as a "real world" example. This is intended as a '101-type' of primer; its aim is to help developers of original pharmaceuticals navigate the maze of patents, other IP regulations, and statutory exclusivities in major markets so that they can make proper use of them.
Assuntos
Azetidinas , Neoplasias , Humanos , Patentes como Assunto , Marketing , Indústria FarmacêuticaRESUMO
RRx-001 is a shape shifting small molecule with Fast Track designation for the prevention/amelioration of chemoradiation-induced severe oral mucositis (SOM) in newly diagnosed Head and Neck cancer. It has been intentionally developed or "engineered" as a chimeric single molecular entity that targets multiple redox-based mechanisms. Like an antibody drug conjugate (ADC), RRx-001 contains, at one end a "targeting" moiety, which binds to the NLRP3 inflammasome and inhibits it as well as Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of Nrf2, and, at the other end, a conformationally constrained, dinitro containing 4 membered ring, which fragments under conditions of hypoxia and reduction to release therapeutically active metabolites i.e., the payload. This "payload", which is delivered specifically to hypoperfused and inflamed areas, includes nitric oxide, nitric oxide related species and carbon-centered radicals. As observed with ADCs, RRx-001 contains a backbone amide "linker" attached to a binding site, which correlates with the Fab region of an antibody, and to the dinitroazetidine payload, which is microenvironmentally activated. However, unlike ADCs, whose large size impacts their pharmacokinetic properties, RRx-001 is a nonpolar small molecule that easily crosses cell membranes and the blood brain barrier (BBB) and distributes systemically. This short review is organized around the de novo design and in vivo pro-oxidant/pro-inflammatory and antioxidant/anti-inflammatory activity of RRx-001, which, in turn, depends on the reduced to oxidized glutathione ratio and the oxygenation status of tissues.