Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Sci Technol ; 55(2): 952-961, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33405913

RESUMO

Increasing inputs of organic matter (OM) are driving declining dissolved oxygen (DO) concentrations in coastal ecosystems worldwide. The quantity, source, and composition of OM transported to coastal ecosystems via stormwater runoff have been altered by land use changes associated with urbanization and subsequent hydrologic flows that accompany urban stormwater management. To elucidate the role of stormwater in the decline of coastal DO, rain event sampling of biochemical oxygen demand (BOD) in samples collected from the outfall of stormwater ponds and wetlands, as well as samples of largely untreated runoff carried by stormwater ditches, was conducted across a range of urban and suburban development densities. Sampling also included measurements of particulate and dissolved carbon and nitrogen, carbon and nitrogen stable isotopes, and chlorophyll-a. Results suggest stormwater may be a significant source of labile OM to receiving waters, especially during the first flush of runoff, even though BOD concentrations vary both among and within sites in response to rain events. BOD variability was best predicted by particulate OM (POM) and chlorophyll-a, rather than the larger pool of dissolved OM. These findings demonstrate the importance of managing episodic stormwater discharge, especially POM, from urbanized areas to mitigate DO impairment in larger downstream systems.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Oxigênio , Chuva , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 53(10): 5758-5767, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30998849

RESUMO

We investigated the functional group chemistry of natural organic matter (NOM) associated with both U(IV) and U(VI) in solids from mineralized deposits exposed to oxidizing conditions from the Jackpile Mine, Laguna Pueblo, NM. The uranium (U) content in unreacted samples was 0.44-2.6% by weight determined by X-ray fluorescence. In spite of prolonged exposure to ambient oxidizing conditions, ≈49% of U(IV) and ≈51% of U(VI) were identified on U LIII edge extended X-ray absorption fine structure spectra. Loss on ignition and thermogravimetric analyses identified from 13% to 44% of NOM in the samples. Carbonyl, phenolic, and carboxylic functional groups in the unreacted samples were identified by fitting of high-resolution X-ray photoelectron spectroscopy (XPS) C 1s and O 1s spectra. Peaks corresponding to phenolic and carbonyl functional groups had intensities higher than those corresponding to carboxylic groups in samples from the supernatant from batch extractions conducted at pH 13, 7, and 2. U(IV) and U(VI) species were detected in the supernatant after batch extractions conducted under oxidizing conditions by fitting of high-resolution XPS U 4f spectra. The outcomes from this study highlight the importance of the influence of pH on the organic functional group chemistry and U speciation in mineralized deposits.


Assuntos
Urânio , New Mexico , Oxirredução , Espectroscopia Fotoeletrônica
3.
Bioscience ; 67(2): 118-133, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596614

RESUMO

The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm.

4.
Environ Sci Technol ; 51(12): 6683-6690, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28510426

RESUMO

Monitoring phytoplankton classes in river networks is critical to understanding phytoplankton dynamics and to predicting the ecosystem response to changing land-use and seasons. Applicability of phytoplankton fluorescence as a quick and effective ecological monitoring approach is relatively unexplored in freshwater ecosystems. We used multivariate analyses of fluorescence from pigment extracted in 90% acetone to assess the variability in phytoplankton classes, herbivory, and organic matter quality in a freshwater river network. A total of four models developed by the parallel factor analysis (PARAFAC) of fluorescence excitation and emission matrices identified six components: Model 1 (pheophytin-A and chlorophyll-A), Model 2 (chlorophyll-B and chlorophyll-C), Model 3 (pheophytin-B), and Model 4 (pheophytin-C). Redundancy analyses revealed that in the summer, urban and agricultural streams were abundant in chlorophylls, fresh organic matter, and organic nitrogen, whereas in winter, streams were high in phaeopigments. A slow-moving, light-limited wetland stream was an exception as high phaeopigment abundance was observed in both seasons. The PARAFAC components were used to develop a partial least-squares regression-based model (r2 = 0.53; Nash-Sutcliffe efficiency = 0.5; n = 147) that successfully predicted chlorophyll-A concentrations from an external subset of river water samples (r2 = 0.41; p < 0.0001; n = 75). Thus, combining multivariate analyses and fluorescence spectroscopy is useful for monitoring and predicting phytoplankton dynamics in large river networks.


Assuntos
Clorofila , Água Doce , Análise Multivariada , Fitoplâncton , Monitoramento Ambiental , Nitrogênio , Rios , Estações do Ano
5.
Environ Sci Technol ; 51(22): 13104-13112, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29083877

RESUMO

There is increased focus on nitrogen (N)-containing dissolved organic matter (DOM) as a nutrient source supporting eutrophication in N-sensitive estuarine ecosystems. This is particularly relevant in watersheds undergoing urban and agricultural development, leading to increased dissolved organic N (DON) loading. To understand how this shift in N-loading influences estuarine phytoplankton production, nutrient addition bioassays were conducted in the N-limited Neuse River Estuary, North Carolina from 2014 to 2015. Additions included N-rich DOM sources characteristic of urban and agricultural development, including chicken and turkey litter leachate, wastewater treatment facility effluent, and concentrated river DOM (used as a reference). Each DOM addition was coupled with an inorganic nutrient treatment to account for inorganic nutrient concentrations (NO2/3, NH4, PO4) in each respective DOM addition. Repeated measures analysis of variance (RM-ANOVA) showed that chicken litter leachate stimulated phytoplankton growth greater than its coupled inorganic nutrient treatment. Wastewater treatment facility effluent, turkey litter leachate, and concentrated river DOM did not stimulate phytoplankton growth greater than their respective inorganic nutrient controls. DOM fluorescence (EEM-PARAFAC) indicated the chicken litter contained a biologically reactive fluorescent DOM component, identified as the nonhumic, biologically labile, "N-peak", which may be responsible for stimulating the observed phytoplankton growth in the chicken litter leachate treatments.


Assuntos
Estuários , Fitoplâncton , Nitrogênio , North Carolina , Rios
6.
Environ Sci Technol ; 50(16): 8473-84, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27404466

RESUMO

Dissolved organic nitrogen (DON) is the nitrogen (N)-containing component of dissolved organic matter (DOM) and in aquatic ecosystems is part of the biologically reactive nitrogen pool that can degrade water quality in N-sensitive waters. Unlike inorganic N (nitrate and ammonium) DON is comprised of many different molecules of variable reactivity. Few methods exist to track the sources of DON in watersheds. In this study, DOM excitation-emission matrix (EEM) fluorescence of eight discrete DON sources was measured and modeled with parallel factor analysis (PARAFAC) and the resulting model ("FluorMod") was fit to 516 EEMs measured in surface waters from the main stem of the Neuse River and its tributaries, located in eastern North Carolina. PARAFAC components were positively correlated to DON concentration. Principle components analysis (PCA) was used to confirm separation of the eight sources and model validation was achieved by measurement of source samples not included in the model development with an error of <10%. Application of FluorMod to surface waters of streams within the Neuse River Basin showed that while >70% of DON was attributed to natural sources, nonpoint sources, such as soil and poultry litter leachates and street runoff, accounted for the remaining 30%. This result was consistent with changes in land use from urbanized Raleigh metropolitan area to the largely agricultural Southeastern coastal plain. Overall, the predicted fraction of nonpoint DON sources was consistent with previous reports of increased organic N inputs in this river basin, which are suspected of impacting the water quality of its estuary.


Assuntos
Estuários , Nitrogênio/análise , Agricultura , Ecossistema , Rios , Qualidade da Água
7.
Environ Sci Technol ; 46(16): 8628-36, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22803700

RESUMO

Excitation-emission matrix (EEM) fluorescence was combined with parallel factor analysis (PARAFAC) to model base-extracted particulate (POM) and dissolved (DOM) organic matter quality in the Neuse River Estuary (NRE), North Carolina, before and after passage of Hurricane Irene in August 2011. Principle components analysis was used to determine that four of the PARAFAC components (C1-C3 and C6) were terrestrial sources to the NRE. One component (C4), prevalent in DOM of nutrient-impacted streams and estuaries and produced in phytoplankton cultures, was enriched in the POM and in surface sediment pore water DOM. One component (C5) was related to recent autochthonous production. Photoexposure of unfiltered Neuse River water caused an increase in slope ratio values (S(R)) which corresponded to an increase in the ratio C2:C3 for DOM, and the production of C4 fluorescence in both POM and DOM. Changes to the relative abundance of C4 in POM and DOM indicated that advection of pore water DOM from surface sediments into overlying waters could increase the autochthonous quality of DOM in shallow microtidal estuaries. Modeling POM and DOM simultaneously with PARAFAC is an informative technique that is applicable to assessments of estuarine water quality.


Assuntos
Estuários , Compostos Orgânicos/análise , Rios , Análise Fatorial , Fluorescência , Tamanho da Partícula , Solubilidade
8.
Estuaries Coast ; 45: 2082-2101, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37009415

RESUMO

Seagrasses are globally recognized for their contribution to blue carbon sequestration. However, accurate quantification of their carbon storage capacity remains uncertain due, in part, to an incomplete inventory of global seagrass extent and assessment of its temporal variability. Furthermore, seagrasses are undergoing significant decline globally, which highlights the urgent need to develop change detection techniques applicable to both the scale of loss and the spatial complexity of coastal environments. This study applied a deep learning algorithmto a 30-year time series of Landsat 5 through 8 imagery to quantify seagrass extent, leaf area index (LAI), and belowground organic carbon (BGC) in St. Joseph Bay, Florida, between 1990 and 2020. Consistent with previous field-based observations regarding stability of seagrass extent throughout St. Joseph Bay, there was no temporal trend in seagrass extent (23 ± 3 km2, τ = 0.09, p = 0.59, n = 31), LAI (1.6 ± 0.2, τ = -0.13, p = 0.42, n = 31), or BGC (165 ± 19 g C m-2, τ = - 0.01, p = 0.1, n = 31) over the 30-year study period. There were, however, six brief declines in seagrass extent between the years 2004 and 2019 following tropical cyclones, from which seagrasses recovered rapidly. Fine-scale interannual variability in seagrass extent, LAI, and BGC was unrelated to sea surface temperature or to climate variability associated with the El Niño-Southern Oscillation or the North Atlantic Oscillation. Although our temporal assessment showed that seagrass and its belowground carbon were stable in St. Joseph Bay from 1990 to 2020, forecasts suggest that environmental and climate pressures are ongoing, which highlights the importance of the method and time series presented here as a valuable tool to quantify decadal-scale variability in seagrass dynamics. Perhaps more importantly, our results can serve as a baseline against which we can monitor future change in seagrass communities and their blue carbon.

9.
Mar Environ Res ; 179: 105694, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35850077

RESUMO

Seagrass meadows are degraded globally and continue to decline in areal extent due to human pressures and climate change. This study used the bio-optical model GrassLight to explore the impact of climate change and anthropogenic stressors on seagrass extent, leaf area index (LAI) and belowground organic carbon (BGC) in St. Joseph Bay, Florida, using water quality data and remotely-sensed sea surface temperature (SST) from 2002 to 2020. Model predictions were compared with satellite-derived measurements of seagrass extent and shoot density from the Landsat images for the same period. The GrassLight-derived area of potential seagrass habitat ranged from 36.2 km2 to 39.2 km2, averaging 38.0 ± 0.8 km2 compared to an observed seagrass extent of 23.0 ± 3.0 km2 derived from Landsat (range = 17.9-27.4 km2). GrassLight predicted a mean seagrass LAI of 2.7 m2 leaf m-2 seabed, compared to a mean LAI of 1.9 m2 m-2 estimated from Landsat, indicating that seagrass density in St. Joseph Bay may have been below its light-limited ecological potential. Climate and anthropogenic change simulations using GrassLight predicted the impact of changes in temperature, pH, chlorophyll a, chromophoric dissolved organic matter and turbidity on seagrass meadows. Simulations predicted a 2-8% decline in seagrass extent with rising temperatures that was offset by a 3-11% expansion in seagrass extent in response to ocean acidification when compared to present conditions. Simulations of water quality impacts showed that a doubling of turbidity would reduce seagrass extent by 18% and total leaf area by 21%. Combining climate and water quality scenarios showed that ocean acidification may increase seagrass productivity to offset the negative effects of both thermal stress and declining water quality on the seagrasses growing in St. Joseph Bay. This research highlights the importance of considering multiple limiting factors in understanding the effects of environmental change on seagrass ecosystems.


Assuntos
Carbono , Ecossistema , Baías , Clorofila A , Florida , Humanos , Concentração de Íons de Hidrogênio , Água do Mar
10.
Sci Total Environ ; 760: 143414, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229091

RESUMO

Chromophoric dissolved organic matter (CDOM) exported from riverine catchments can influence biogeochemical processes in coastal environments with implications for water quality and carbon budget. Despite recent efforts to quantify C fluxes during high flow events, knowledge gaps exist regarding the fluxes and yield of terrestrial, reactive vs. recalcitrant CDOM under episodic to base-flow conditions from uplands to downstream estuaries. We used stream dissolved organic carbon (DOC) concentrations and CDOM optical properties using parallel factor analysis to characterize composition and fluxes under variable flow conditions for a coastal river basin in the SE USA. Our findings showed that episodic flows (>75th percentile) were marked by the elevated flux of humic acid-like CDOM and lower in-stream autochthonous production, or microbial degradation. Further, 70% of the terrestrial CDOM was exported during high flows, with a 3-fold increase in CDOM flux during episodic events, including Hurricane Irene in 2011. While, low flows (<25th percentile) were marked by an increased abundance of microbial, humic CDOM that can be easily processed within the estuary. Due to greater wetland coverage in the Neuse, the annual CDOM yield was 5-6 times higher than the larger rivers, such as the Mississippi, USA, and Changjiang, China. We suggest that similar coastal watersheds in SE USA or elsewhere may contribute substantial amounts of reactive CDOM to the estuaries during high flow conditions and can have negative water quality implications for the coastal C dynamics. These findings can help predict the evolution of coastal C cycling under projected climate change and inform the development of appropriate management strategies.

11.
Sci Adv ; 7(51): eabj1372, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910519

RESUMO

Long-term "Blue Carbon" burial in seagrass meadows is complicated by other carbon and alkalinity exchanges that shape net carbon sequestration. We measured a suite of such processes, including denitrification, sulfur, and inorganic carbon cycling, and assessed their impact on air-water CO2 exchange in a typical seagrass meadow underlain by carbonate sediments. Eddy covariance measurements reveal a consistent source of CO2 to the atmosphere at an average rate of 610 ± 990 µmol m−2 hour−1 during our study and 700 ± 660 µmol m−2 hour−1 (6.1 mol m−2 year−1) over an annual cycle. Net alkalinity consumption by ecosystem calcification explains >95% of the observed CO2 emissions, far exceeding organic carbon burial and anaerobic alkalinity generation. We argue that the net carbon sequestration potential of seagrass meadows may be overestimated if calcification-induced CO2 emissions are not accounted for, especially in regions where calcification rates exceed net primary production and burial.

12.
Biodegradation ; 21(2): 257-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19760111

RESUMO

Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December).


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Rios/química , Estações do Ano
13.
Water Res ; 169: 115248, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706125

RESUMO

The effect of watershed characteristics (land use land cover and morphology) on spatial variability in dissolved organic matter (DOM) composition, and concentrations of dissolved organic carbon [DOC] and nitrogen [DON] was assessed in a coastal river basin draining into Pamlico Sound in eastern North Carolina, USA. Understanding the factors that influence DOM concentration and composition i.e., structurally complex molecules with high molecular weight versus low molecular weight, simple molecules can provide insights on DOM cycling and water composition implications. Such information is imperative for large coastal river networks undergoing rapid and intense land use and land cover (LULC) changes. DOM composition was estimated using optical indices calculated from DOM absorbance and fluorescence measurements. DOM was derived from terrestrial sources, and ordination analysis indicated that LULC, in particular, % wetland area was the most significant control on DOM composition and concentration. Wetland and agricultural coastal streams were abundant in humic and complex DOM, whereas forested and urban streams were least abundant in humic DOM. We speculate that greater availability of mobilizable DOM in wetland and agricultural watersheds contributed to this observation. In comparison, mixed urbanized and forested streams in North Carolina's Piedmont region were abundant in [DOC], less complex, low molecular weight DOM, as well as greater amounts [DON] due to higher urban runoff and elevated DOM production in these streams. Our results indicated that physiographic transition from Piedmont to coastal plain and varying LULC influenced the spatial variability in DOM composition and concentration. Our findings highlight that increasing anthropogenic alterations might increase the abundance of reactive DOM in coastal rivers and estuaries resulting in severe water quality issues. This information is important for monitoring and developing land use policies.


Assuntos
Rios , Qualidade da Água , Agricultura , Estuários , North Carolina
14.
Ecol Evol ; 10(24): 14178-14188, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391708

RESUMO

Climate and environmental condition drive biodiversity at many levels of biological organization, from populations to ecosystems. Combined with paleoecological reconstructions, palaeogenetic information on resident populations provides novel insights into evolutionary trajectories and genetic diversity driven by environmental variability. While temporal observations of changing genetic structure are often made of sexual populations, little is known about how environmental change affects the long-term fate of asexual lineages. Here, we provide information on obligately asexual, triploid Daphnia populations from three Arctic lakes in West Greenland through the past 200-300 years to test the impact of environmental change on the temporal and spatial population genetic structure. The contrasting ecological state of the lakes, specifically regarding salinity and habitat structure may explain the observed lake-specific clonal composition over time. Palaeolimnological reconstructions show considerable regional environmental fluctuations since 1,700 (the end of the Little Ice Age), but the population genetic structure in two lakes was almost unchanged with at most two clones per time period. Their local populations were strongly dominated by a single clone that has persisted for 250-300 years. We discuss possible explanations for the apparent population genetic stability: (a) persistent clones are general-purpose genotypes that thrive under broad environmental conditions, (b) clonal lineages evolved subtle genotypic differences unresolved by microsatellite markers, or (c) epigenetic modifications allow for clonal adaptation to changing environmental conditions. Our results motivate research into the mechanisms of adaptation in these populations, as well as their evolutionary fate in the light of accelerating climate change in the polar regions.

15.
ACS Omega ; 5(13): 7326-7341, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280874

RESUMO

Munitions compounds (i.e., 2,4,6-trinitrotoluene (TNT), octahy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocin (HMX), and hexadydro-1,3,5-trinitro-1,3,5-triazin (RDX), also called energetics) were originally believed to be recalcitrant to microbial biodegradation based on historical groundwater chemical attenuation data and laboratory culture work. More recently, it has been established that natural bacterial assemblages in coastal waters and sediment can rapidly metabolize these organic nitrogen sources and even incorporate their carbon and nitrogen into bacterial biomass. Here, we report on the capacity of natural microbial assemblages in three coastal North Carolina (United States) estuaries to metabolize energetics and phenanthrene (PHE), a proxy for terrestrial aromatic compounds. Microbial assemblages generally had the highest ecosystem capacity (mass of the compound mineralized per average estuarine residence time) for HMX (21-5463 kg) > RDX (1.4-5821 kg) ≫ PHE (0.29-660 kg) > TNT (0.25-451 kg). Increasing antecedent precipitation tended to decrease the ecosystem capacity to mineralize TNT in the Newport River Estuary, and PHE and TNT mineralization were often highest with increasing salinity. There was some evidence from the New River Estuary that increased N-demand (due to a phytoplankton bloom) is associated with increased energetic mineralization rates. Using this type of analysis to determine the ecosystem capacity to metabolize energetics can explain why these compounds are rarely detected in seawater and marine sediment, despite the known presence of unexploded ordnance or recent use in military training exercises. Overall, measuring the ecosystem capacity may help predict the effects of climate change (warming and altered precipitation patterns) and other perturbations on exotic compound fate and transport within ecosystems and provide critical information for managers and decision-makers to develop management strategies based on these changes.

16.
Sci Rep ; 10(1): 6144, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273548

RESUMO

Primary production by phytoplankton represents a major pathway whereby atmospheric CO2 is sequestered in the ocean, but this requires iron, which is in scarce supply. As over 99% of iron is complexed to organic ligands, which increase iron solubility and microbial availability, understanding the processes governing ligand dynamics is of fundamental importance. Ligands within humic-like substances have long been considered important for iron complexation, but their role has never been explained in an oceanographically consistent manner. Here we show iron co-varying with electroactive humic substances at multiple open ocean sites, with the ratio of iron to humics increasing with depth. Our results agree with humic ligands composing a large fraction of the iron-binding ligand pool throughout the water column. We demonstrate how maximum dissolved iron concentrations could be limited by the concentration and binding capacity of humic ligands, and provide a summary of the key processes that could influence these parameters. If this relationship is globally representative, humics could impose a concentration threshold that buffers the deep ocean iron inventory. This study highlights the dearth of humic data, and the immediate need to measure electroactive humics, dissolved iron and iron-binding ligands simultaneously from surface to depth, across different ocean basins.

17.
Nat Commun ; 11(1): 2458, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424260

RESUMO

Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth's climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.

18.
Sci Rep ; 9(1): 10620, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337803

RESUMO

Coastal North Carolina, USA, has experienced three extreme tropical cyclone-driven flood events since 1999, causing catastrophic human impacts from flooding and leading to major alterations of water quality, biogeochemistry, and ecological conditions. The apparent increased frequency and magnitudes of such events led us to question whether this is just coincidence or whether we are witnessing a regime shift in tropical cyclone flooding and associated ecosystem impacts. Examination of continuous rainfall records for coastal NC since 1898 reveals a period of unprecedentedly high precipitation since the late-1990's, and a trend toward increasingly high precipitation associated with tropical cyclones over the last 120 years. We posit that this trend, which is consistent with observations elsewhere, represents a recent regime shift with major ramifications for hydrology, carbon and nutrient cycling, water and habitat quality and resourcefulness of Mid-Atlantic and possibly other USA coastal regions.

19.
Water Res ; 147: 164-176, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30308375

RESUMO

Despite numerous studies on changes to optical proxies of dissolved organic matter (DOM) by biogeochemical processing, the applicability of commonly-used spectroscopic indices has not been explored as DOM source tracking tools under conditions where biogeochemical processes may alter them. For this study, two contrasting DOM end members, Suwannee River fulvic acid (SRFA) and algogenic DOM (ADOM), and their mixtures, were used to examine the potential changes in the conservative mixing behaviors of several well-known optical indices via end member mixing analysis under the influence of biodegradation, UV irradiation, and clay mineral (kaolin) adsorption. Most of the source tracking indices exhibited large deviations from conservative mixing behavior between the two end-members. Biodegradation tended to lower the portions of labile and ADOM in the mixtures, while the allochthonous end member (SRFA) was reduced by a greater extent after the process of UV irradiation or adsorption. The extent of the variations in biological index (BIX) and fluorescence index (FI) was smaller for more allochthonous DOM mixtures under the processes of biodegradation and UV irradiation. Overall, the process-driven variations in ratios of humic-like: protein-like fluorescence (as modeled by parallel factor analysis, PARAFAC) were greater for the SRFA versus ADOM. Evaluation criteria used in this study suggested that BIX, specific UV absorbance (SUVA), and FI each could be the reliable discrimination parameter least affected by biodegradation, UV irradiation, and adsorption, respectively. This study provided criterion information for the choice and the interpretation of the optical indices for DOM source discrimination in aquatic environments after substantial biogeochemical processing.


Assuntos
Rios , Adsorção , Análise Fatorial , Espectrometria de Fluorescência
20.
Photochem Photobiol ; 83(4): 782-92, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17645648

RESUMO

Wetlands and tidal marshes in the Rhode River estuary of the Chesapeake Bay act as important sources of dissolved organic carbon and strongly absorbing dissolved organic matter (DOM) for adjacent estuarine waters. The effects of solar exposure on the photochemical degradation of colored DOM (CDOM) were examined for material derived from different sources (estuarine and freshwater parts of the Rhode River, sub-watershed stream, marshes) in this estuarine ecosystem. Consistent with changes in fluorescence emission, absorption loss upon exposure to different portions of the solar spectrum (i.e. different long-pass cut-off filters) occurred across the entire spectrum but the wavelength of maximum photobleaching decreased as the cut-off wavelength of the filter decreased. Our results illustrate that solar exposure can cause either an increase or a decrease in the CDOM absorption spectral slope, S(CDOM), depending on the spectral quality of irradiation and, thus, on the parameters (e.g. atmospheric composition, concentration of UV-absorbing water constituents) that affect the spectral characteristics of the light to which CDOM is exposed. We derived a simple spectral model for describing the effects of solar exposure on CDOM optical quality. The model accurately, and consistently, predicted the observed dependence of CDOM photobleaching on the spectral quality of solar exposure.


Assuntos
Compostos Orgânicos/efeitos da radiação , Fluorescência , Fotoquímica , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA