Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(9): 5541-5552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362946

RESUMO

BACKGROUND: Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS: The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 µm (day 0) to 2.01 ± 0.04 µm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION: The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.


Assuntos
Emulsões , Óleos de Peixe , Helianthus , Olea , Oxirredução , Proteínas de Plantas , Hidrolisados de Proteína , Sementes , Emulsões/química , Helianthus/química , Olea/química , Hidrolisados de Proteína/química , Óleos de Peixe/química , Sementes/química , Proteínas de Plantas/química , Água/química , Antioxidantes/química , Hidrólise , Emulsificantes/química
2.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009330

RESUMO

In this work, we evaluated the physical and oxidative stabilities of 5% w/w fish oil-in-water emulsions stabilized with 1%wt Tween20 and containing 2 mg/mL of protein hydrolysates from olive seed (OSM-H), sunflower (SFSM-H), rapeseed (RSM-H) and lupin (LUM-H) meals. To this end, the plant-based substrates were hydrolyzed at a 20% degree of hydrolysis (DH) employing a mixture 1:1 of subtilisin: trypsin. The hydrolysates were characterized in terms of molecular weight profile and in vitro antioxidant activities (i.e., DPPH scavenging and ferrous ion chelation). After incorporation of the plant protein hydrolysates as water-soluble antioxidants in the emulsions, a 14-day storage study was conducted to evaluate both the physical (i.e., ζ-potential, droplet size and emulsion stability index) and oxidative (e.g., peroxide and anisidine value) stabilities. The highest in vitro DPPH scavenging and iron (II)-chelating activities were exhibited by SFSM-H (IC50 = 0.05 ± 0.01 mg/mL) and RSM-H (IC50 = 0.41 ± 0.06 mg/mL). All the emulsions were physically stable within the storage period, with ζ-potential values below -35 mV and an average mean diameter D[4,3] of 0.411 ± 0.010 µm. Although LUM-H did not prevent lipid oxidation in emulsions, OSM-H and SFSM-H exhibited a remarkable ability to retard the formation of primary and secondary lipid oxidation products during storage when compared with the control emulsion without antioxidants. Overall, our findings show that plant-based enzymatic hydrolysates are an interesting alternative to be employed as natural antioxidants to retard lipid oxidation in food emulsions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA