Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(7): e1011696, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976753

RESUMO

Quorum sensing (QS) is a regulatory mechanism used by bacteria to coordinate group behavior in response to high cell densities. During QS, cells monitor the concentration of external signals, known as autoinducers, as a proxy for cell density. QS often involves positive feedback loops, leading to the upregulation of genes associated with QS signal production and detection. This results in distinct steady-state concentrations of QS-related molecules in QS-ON and QS-OFF states. Due to the slow decay rates of biomolecules such as proteins, even after removal of the initial stimuli, cells can retain elevated levels of QS-associated biomolecules for extended periods of time. This persistence of biomolecules after the removal of the initial stimuli has the potential to impact the response to future stimuli, indicating a memory of past exposure. This phenomenon, which is a consequence of the carry-over of biomolecules rather than genetic inheritance, is known as "phenotypic" memory. This theoretical study aims to investigate the presence of phenotypic memory in QS and the conditions that influence this memory. Numerical simulations based on ordinary differential equations and analytical modeling were used to study gene expression in response to sudden changes in cell density and extracellular signal concentrations. The model examined the effect of various cellular parameters on the strength of QS memory and the impact on gene regulatory dynamics. The findings revealed that QS memory has a transient effect on the expression of QS-responsive genes. These consequences of QS memory depend strongly on how cell density was perturbed, as well as various cellular parameters, including the Fold Change in the expression of QS-regulated genes, the autoinducer synthesis rate, the autoinducer threshold required for activation, and the cell growth rate.


Assuntos
Percepção de Quorum , Percepção de Quorum/fisiologia , Percepção de Quorum/genética , Fenótipo , Modelos Biológicos , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Simulação por Computador , Fenômenos Fisiológicos Bacterianos
2.
ACS Synth Biol ; 13(5): 1467-1476, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38696739

RESUMO

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Assuntos
Luz , Optogenética , Regiões Promotoras Genéticas , Shewanella , Shewanella/genética , Shewanella/metabolismo , Optogenética/métodos , Transporte de Elétrons , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes/genética , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA