RESUMO
BACKGROUND: This study aimed to evaluate the gap between guidelines and local clinical practice for diagnosis and treatment of uncomplicated and severe malaria, the patient characteristics, diagnostic approach, treatment, and compliance to standard guideline recommendations. METHODS: This was a multicentre, observational study conducted between October 2020 and March 2021 in which patients of all ages with symptoms suggestive of malaria and who visited a healthcare facility were prospectively enrolled in six countries in sub-Saharan Africa (The Democratic Republic of the Congo, Mozambique, Nigeria, Rwanda, The United Republic of Tanzania, and Zambia). RESULTS: Of 1001 enrolled patients, 735 (73.4%) patients had confirmed malaria (based on overall judgment by investigator) at baseline (uncomplicated malaria: 598 [81.4%] and severe malaria: 137 [18.6%]). Of the confirmed malaria patients, 533 (72.5%) were administered a malaria rapid diagnostic test. The median age of patients was 11 years (range: 2 weeks-91 years) with more patients coming from rural (44.9%) than urban (30.6%) or suburban areas (24.5%). At the community level, 57.8% of patients sought advice or received treatment for malaria and 56.9% of patients took one or more drugs for their illness before coming to the study site. In terms of early access to care, 44.1% of patients came to the study site for initial visit ≥ 48 h after symptom onset. In patients with uncomplicated malaria, the most prescribed treatments were artemisinin-based combination therapy (ACT; n = 564 [94.3%]), primarily using artemether-lumefantrine (82.3%), in line with the World Health Organization (WHO) treatment guidelines. In addition, these patients received antipyretics (85.6%) and antibiotics (42.0%). However, in those with severe malaria, only 66 (48.2%) patients received parenteral treatment followed by oral ACT as per WHO guidelines, whereas 62 (45.3%) received parenteral treatment only. After receiving ambulatory care, 88.6% of patients with uncomplicated malaria were discharged and 83.2% of patients with severe malaria were discharged after hospitalization. One patient with uncomplicated malaria having multiple co-morbidities and three patients with severe malaria died. CONCLUSIONS: The findings of this study suggest that the prescribed treatment in most patients with uncomplicated malaria, but not of those with severe malaria, was in alignment with the WHO recommended guidelines.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Recém-Nascido , Combinação Arteméter e Lumefantrina/uso terapêutico , Estudos Prospectivos , Artemeter/uso terapêutico , Malária/diagnóstico , Malária/tratamento farmacológico , Prescrições , Organização Mundial da Saúde , Tanzânia , Malária Falciparum/tratamento farmacológico , Combinação de MedicamentosRESUMO
BACKGROUND: The RTS,S malaria vaccine is currently undergoing phase 3 trials. High vaccine-induced antibody titres to the circumsporozoite protein (CSP) antigen have been associated with protection from infection and episodes of clinical malaria. METHODS: Using data from 5,144 participants in nine phase 2 trials, we explore predictors of vaccine immunogenicity (anti-CSP antibody titres), decay in antibody titres, and the association between antibody titres and clinical outcomes. We use empirically-observed relationships between these factors to predict vaccine efficacy in a range of scenarios. RESULTS: Vaccine-induced anti-CSP antibody titres were significantly associated with age (P = 0.04), adjuvant (P <0.001), pre-vaccination anti-hepatitis B surface antigen titres (P = 0.005) and pre-vaccination anti-CSP titres (P <0.001). Co-administration with other vaccines reduced anti-CSP antibody titres although not significantly (P = 0.095). Antibody titres showed a bi-phasic decay over time with an initial rapid decay in the first three months and a second slower decay over the next three to four years. Antibody titres were significantly associated with protection, with a titre of 51 (95% Credible Interval (CrI): 29 to 85) ELISA units/ml (EU/mL) predicted to prevent 50% of infections in children. Vaccine efficacy was predicted to decline to zero over four years in a setting with entomological inoculation rate (EIR) = 20 infectious bites per year (ibpy). Over a five-year follow-up period at an EIR = 20 ibpy, we predict RTS,S will avert 1,782 cases per 1,000 vaccinated children, 1,452 cases per 1,000 vaccinated infants, and 887 cases per 1,000 infants when co-administered with expanded programme on immunisation (EPI) vaccines. Our main study limitations include an absence of vaccine-induced cellular immune responses and short duration of follow-up in some individuals. CONCLUSIONS: Vaccine-induced anti-CSP antibody titres and transmission intensity can explain variations in observed vaccine efficacy.
Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Adulto , África Subsaariana/epidemiologia , Teorema de Bayes , Criança , Pré-Escolar , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Proteínas de Protozoários/imunologia , Resultado do Tratamento , VacinaçãoRESUMO
BACKGROUND: The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. METHODS: Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 µg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 µg dose with a rabies vaccine comparator. RESULTS: In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. CONCLUSIONS: Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. TRIAL REGISTRATIONS: Clinical Trials NCT00666380.
Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , Adjuvantes Imunológicos , Adulto , Formação de Anticorpos , Reações Cruzadas/imunologia , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Injeções Intramusculares , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , MasculinoRESUMO
BACKGROUND: Malaria remains a major global public health concern, especially in sub-Saharan Africa. The RTS,S/AS01 malaria candidate vaccine was reviewed by the European Medicines Agency and received a positive scientific opinion; WHO subsequently recommended pilot implementation in sub-Saharan African countries. Because malaria and HIV overlap geographically, HIV-infected children should be considered for RTS,S/AS01 vaccination. We therefore aimed to assess the safety of RTS,S/AS01 in HIV-infected children at two sites in western Kenya. METHODS: We did a randomised, double-blind, controlled trial at the clinical trial sites of the Kenya Medical Research Institute (KEMRI)-Walter Reed Army Institute of research in Kisumu and the KEMRI/US Centers for Disease Control and Prevention in Siaya. Eligible participants were infants and children aged from 6 weeks to 17 months with WHO stage 1 or 2 HIV disease (documented positive by DNA PCR), whether or not they were receiving antiretroviral therapy (ART). We randomly assigned participants (1:1) to receive three doses of either RTS,S/AS01 or rabies vaccine (both 0·5 mL per dose by intramuscular injection), given once per month at 0, 1, and 2 months. We did the treatment allocation using a web-based central randomisation system stratified by age (6 weeks-4 months, 5-17 months), and by baseline CD4% (<10, 10-14, 15-19, and ≥20). Data were obtained in an observer-blind manner, and the vaccine recipient, their parent or carer, the funder, and investigators responsible for the assessment of endpoints were all masked to treatment allocation (only staff responsible for the preparation and administration of the vaccines were aware of the assignment and these individuals played no other role in the study). We provided ART, even if the participants were not receiving ART before the study, and daily co-trimoxazole for prevention of opportunistic infections. The primary outcome was the occurrence of serious adverse events until 14 months after dose 1 of the vaccine, assessed in the intention-to-treat population. This trial was registered at ClinicalTrials.gov, number NCT01148459. FINDINGS: Between July 30, 2010, and May 24, 2013, we enrolled 200 children to our study and randomly assigned 99 to receive RTS,S/AS01 and 101 to receive rabies vaccine. 177 (89%) of the 200 children enrolled completed 14 months of follow-up. Serious adverse events were noted in 41 (41·4%, 95% CI 31·6-51·8) of 99 RTS,S/AS01 recipients and 37 (36·6%, 27·3-46·8) of 101 rabies-vaccine recipients (relative risk 1·1, 95% CI 0·8-1·6). 20 (20·2%, 95% CI 12·8-29·5) of 99 RTS,S/AS01 recipients and 12 (11·9%, 6·3-19·8) of 101 rabies-vaccine recipients had at least one serious adverse event within 30 days after vaccination, mainly pneumonia, febrile convulsions, and salmonella sepsis. Five (5·1%, 95% CI 1·7-11·4) of 99 RTS,S/AS01 recipients and four (4·0%, 1·1-9·8) of 101 rabies-vaccine recipients died, but no deaths were deemed related to vaccination. Mortality was associated with five cases of pneumonia (1% RTS,S/AS01 recipients vs 3% rabies-vaccine recipients), five cases of gastroenteritis (3% RTS,S/AS01 recipients vs 2% rabies-vaccine recipients), five cases of malnutrition (2% RTS,S/AS01 recipients vs 3% rabies-vaccine recipients), one case of sepsis (1% rabies-vaccine recipients), one case of Haemophilus influenza meningitis (1% rabies-vaccine recipients), and one case of tuberculosis (1% RTS,S/AS01 recipients). INTERPRETATION: RTS, S/AS01 was well tolerated when given to children with WHO clinical stage 1 or 2 HIV disease along with high antiretroviral and co-trimoxazole use. Children with HIV disease could be included in future RTS,S/AS01 vaccination programmes. FUNDING: GlaxoSmithKline Biologicals SA and PATH Malaria Vaccine Initiative.
Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Vacina Antirrábica/efeitos adversos , Método Duplo-Cego , HIV , Infecções por HIV/complicações , Humanos , Lactente , Quênia/epidemiologia , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Vacina Antirrábica/administração & dosagemRESUMO
BACKGROUND: Artemisinin-based combination therapies (ACTs) are the recommended first-line treatment for uncomplicated Plasmodium falciparum malaria. Ferroquine is a new combination partner for fast-acting ACTs such as artesunate. We aimed to assess different doses of ferroquine in combination with artesunate against uncomplicated P falciparum malaria in a heterogeneous population in Africa. METHODS: We did a phase 2, multicentre, parallel-group, double-blind, randomised, dose-ranging non-inferiority trial at eight African hospitals (two in Gabon, three in Burkina Faso, one in Benin, and two in Kenya). We recruited patients presenting with acute P falciparum monoinfection (1000-200,000 parasites per µL), and a central body temperature of at least 37·5°C or history of fever in the past 24 h. We assessed patients in two sequential cohorts: cohort 1 contained adults (bodyweight >50 kg) and adolescents (aged ≥14 years, >30 kg), and cohort 2 contained children (aged 2-13 years, 15-30 kg). We randomly assigned patients (1:1:1:1) to receive artesunate 4 mg/kg per day plus ferroquine 2 mg/kg, 4 mg/kg, or 6 mg/kg, given double-blind once per day for 3 days, or ferroquine monotherapy 4 mg/kg per day given single-blind (ie, allocation was only masked from the patient) once per day for 3 days. We did 14 patient visits (screening, 3 treatment days and 48 h post-treatment surveillance, a visit on day 7, then one follow-up visit per week until day 63). The primary endpoint was non-inferiority of treatment in terms of PCR-corrected cure rate against a reference value of 90%, with a 10% non-inferiority margin, assessed in patients treated without major protocol deviations for parasitologically confirmed malaria. We assessed safety in all treated patients. This study is registered with ClinicalTrials.gov, number NCT00988507, and is closed. FINDINGS: Between Oct 16, 2009, and Sept 22, 2010, we randomly assigned 326 eligible patients to treatment groups, with last follow-up visit on Dec 1, 2010. 284 patients (87%) were available for per-protocol analyses. At day 28, PCR-confirmed cure was noted in 68 (97%, 95% CI 90-100) of 70 patients treated with ferroquine 2 mg/kg plus artesunate, 73 (99%, 93-100) of 74 with ferroquine 4 mg/kg plus artesunate, 71 (99%, 93-100) of 72 with ferroquine 6 mg/kg plus artesunate, and 54 (79%, 68-88) of 68 with ferroquine 4 mg/kg monotherapy. The three dose groups of ferroquine plus artesunate met the non-inferiority hypothesis. The most common adverse events were headache in cohort 1 (30 [19%] of 162 patients) and worsening malaria in cohort 2 (23 [14%] of 164 patients); occurrences were similar between treatment groups. INTERPRETATION: Ferroquine combined with artesunate was associated with high cure rates and was safe at all doses tested, and could be a promising new drug combination for the treatment of P falciparum malaria. Ferroquine could also partner other drugs to establish a new generation of antimalarial combinations, especially in regions that have developed resistance to ACTs. FUNDING: Sanofi.
Assuntos
Aminoquinolinas/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Compostos Ferrosos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Adolescente , Adulto , Idoso , Artesunato , Criança , Pré-Escolar , Método Duplo-Cego , Esquema de Medicação , Quimioterapia Combinada , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Metalocenos , Pessoa de Meia-Idade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Resultado do TratamentoRESUMO
The Kombewa Health and Demographic Surveillance System (HDSS) grew out of the Kombewa Clinical Research Centre in 2007 and has since established itself as a platform for the conduct of regulated clinical trials, nested studies and local disease surveillance. The HDSS is located in a rural part of Kisumu County, Western Kenya, and covers an area of about 369 km(2) along the north-eastern shores of Lake Victoria. A dynamic cohort of 141 956 individuals drawn from 34 718 households forms the HDSS surveillance population. Following a baseline survey in 2011, the HDSS continues to monitor key population changes through routine biannual household surveys. The intervening period between set-up and baseline census was used for preparatory work, in particular Global Positioning System (GPS) mapping. Routine surveys capture information on individual and households including residency, household relationships, births, deaths, migrations (in and out) and causes of morbidity (syndromic incidence and prevalence) as well as causes of death (verbal autopsy). The Kombewa HDSS platform is used to support health research activities, that is clinical trials and epidemiological studies evaluating diseases of public health importance including malaria, HIV and global emerging infectious diseases such as dengue fever.
Assuntos
Coleta de Dados/métodos , Monitoramento Epidemiológico , Vigilância da População , Vigilância em Saúde Pública , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Demografia , Feminino , Humanos , Lactente , Recém-Nascido , Quênia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380.
Assuntos
Antígenos de Protozoários/sangue , L-Lactato Desidrogenase/sangue , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/sangue , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/sangue , Adolescente , Adulto , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , L-Lactato Desidrogenase/genética , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium malariae/citologia , Plasmodium malariae/genética , Plasmodium malariae/metabolismo , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Fatores de TempoRESUMO
BACKGROUND: The efficacy of RTS,S/AS01 as a vaccine for malaria is being tested in a phase 3 clinical trial. Early results show significant, albeit partial, protection against clinical malaria and severe malaria. To ascertain variations in vaccine efficacy according to covariates such as transmission intensity, choice of adjuvant, age at vaccination, and bednet use, we did an individual-participant pooled analysis of phase 2 clinical data. METHODS: We analysed data from 11 different sites in Africa, including 4453 participants. We measured heterogeneity in vaccine efficacy by estimating the interactions between covariates and vaccination in pooled multivariable Cox regression and Poisson regression analyses. Endpoints for measurement of vaccine efficacy were infection, clinical malaria, severe malaria, and death. We defined transmission intensity levels according to the estimated local parasite prevalence in children aged 2-10 years (PrP2â10), ranging from 5% to 80%. Choice of adjuvant was either AS01 or AS02. FINDINGS: Vaccine efficacy against all episodes of clinical malaria varied by transmission intensity (p=0·001). At low transmission (PrP2â10 10%) vaccine efficacy was 60% (95% CI 54 to 67), at moderate transmission (PrP2â10 20%) it was 41% (21 to 57), and at high transmission (PrP2â10 70%) the efficacy was 4% (-10 to 22). Vaccine efficacy also varied by adjuvant choice (p<0·0001)--eg, at low transmission (PrP2â10 10%), efficacy varied from 60% (95% CI 54 to 67) for AS01 to 47% (14 to 75) for AS02. Variations in efficacy by age at vaccination were of borderline significance (p=0·038), and bednet use and sex were not significant covariates. Vaccine efficacy (pooled across adjuvant choice and transmission intensity) varied significantly (p<0·0001) according to time since vaccination, from 36% efficacy (95% CI 24 to 45) at time of vaccination to 0% (-38 to 38) after 3 years. INTERPRETATION: Vaccine efficacy against clinical disease was of limited duration and was not detectable 3 years after vaccination. Furthermore, efficacy fell with increasing transmission intensity. Outcomes after vaccination cannot be gauged accurately on the basis of one pooled efficacy figure. However, predictions of public-health outcomes of vaccination will need to take account of variations in efficacy by transmission intensity and by time since vaccination. FUNDING: Medical Research Council (UK); Bill & Melinda Gates Foundation Vaccine Modelling Initiative; Wellcome Trust.