Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 690, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030485

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS: The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS: These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.


Assuntos
Variação Genética , Fotossíntese , Estresse Salino , Sorghum , Sorghum/genética , Sorghum/fisiologia , Sorghum/metabolismo , Estresse Salino/genética , Clorofila/metabolismo
2.
Ecotoxicol Environ Saf ; 274: 116219, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492483

RESUMO

Cadmium (Cd) is one of the most toxic elements in soil, affecting morphological, physiological, and biochemical processes in plants. Mineral plant nutrition was tested as an effective approach to mitigate Cd stress in several crop species. In this regard, the present study aimed to elucidate how different phosphorus (P) fertilization regimes can improve some bio-physiological processes in tomato plants exposed to Cd stress. In a hydroponic experiment, the impact of two phosphorus fertilizer forms (Polyphosphate (poly-P): condensed P-form with 100% polymerization rate and orthophosphate (ortho-P): from orthophosphoric acid) on the photosynthetic activity, plant growth, and nutrient uptake was assessed under three levels of Cd stress (0, 12, and 25 µM of CdCl2). The obtained results confirmed the negative effects of Cd stress on the chlorophyll content and the efficiency of the photosynthesis machinery. The application of poly-P fertilizer significantly improved the chlorophyll stability index (82%) under medium Cd stress (Cd12), as compared to the ortho-P form (55%). The analysis of the chlorophyll α fluorescence transient curve revealed that the amplitude of Cd effect on the different steps of electron transfer between PSII and PSI was significantly reduced under the poly-P fertilization regime compared to ortho-P, especially under Cd12. The evaluation of the RE0/RC parameter showed that the electron flux reducing end electron acceptors at the PSI acceptor side per reaction center was significantly improved in the poly-P treatment by 42% under Cd12 compared to the ortho-P treatment. Moreover, the use of poly-P fertilizer enhanced iron uptake and its stoichiometric homeostasis in the shoot tissue which maintained an adequate absorption of iron under Cd stress conditions. Findings from this study revealed for the first time that inorganic polyphosphate fertilizers can reduce Cd toxicity in tomato plants by enhancing photosynthesis activity, nutrient uptake, plant growth, and biomass accumulation despite the high level of cadmium accumulation in shoot tissues.


Assuntos
Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Polifosfatos/farmacologia , Fertilizantes/análise , Fotossíntese , Clorofila/análise , Plantas , Ferro/análise , Fósforo/farmacologia , Fertilização , Poluentes do Solo/análise
3.
BMC Plant Biol ; 22(1): 309, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35754019

RESUMO

BACKGROUND: Among phosphate (P) fertilizers, polyphosphates (PolyPs) have shown promising results in terms of crop yield and plant P nutrition. However, compared to conventional P inputs, very little is known on the impact of PolyPs fertilizers on below- and above-ground plant functional traits involved in P acquisition. This study aims to evaluate agro-physiological responses of durum wheat variety ´Karim´ under different PolyPs applications. Three PolyPs fertilizers (PolyA, PolyB, and PolyC) versus one orthophosphate (OrthoP) were applied at three doses; 30 (D30), 60 (D60), and 90 (D90) kg P/ha under controlled conditions. The PolyPs (especially PolyB and PolyC) application at D60 significantly increased morphophysiological root traits (e.g., RL: 42 and 130%; RSA:40 and 60%), shoot inorganic P (Pi) content (159 and 88%), and root P acquisition efficiency (471 and 296%) under PolyB and PolyC, respectively compared to unfertilized plants. Above-ground physiological parameters, mainly nutrient acquisition, chlorophyll content and chlorophyll fluorescence parameters were also improved under PolyB and PolyA application at D60. A significant and positive correlation between shoot Pi content and rhizosphere soil acid phosphatase activity was observed, which reveal the key role of these enzymes in PolyPs (A and B) use efficiency. Furthermore, increased P uptake/RL ratio along with shoot Pi indicates more efficient P allocation to shoots with less investment in root biomass production under PolyPs (especially A and B). CONCLUSIONS: Under our experimental conditions, these findings report positive impacts of PolyPs on wheat growth performance, particularly on photosynthesis and nutrient acquisition at D60, along with modulation of root morpho-physiological traits likely responsible of P acquisition efficiency.


Assuntos
Fertilizantes , Triticum , Clorofila , Fertilizantes/análise , Polifosfatos , Solo
4.
Planta ; 255(3): 71, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190912

RESUMO

MAIN CONCLUSION: Some salt stress response mechanisms can translate into sorghum forage yield and thus act as targets for genetic improvement. Sorghum is a drought-tolerant cereal that is widely grown in the vast Africa's arid and semi-arid areas. Apart from drought, salinity is a major abiotic factor that, in addition to natural causes, has been exacerbated by increased poor anthropological activities. The importance of sorghum as a forage crop in saline areas has yet to be fully realized. Despite intraspecific variation in salt tolerance, sorghum is generally moderately salt-tolerant, and its productivity in saline soils can be remarkably limited. This is due to the difficulty of replicating optimal field saline conditions due to the great heterogeneity of salt distribution in the soil. As a promising fodder crop for saline areas, classic phenotype-based selection methods can be integrated with modern -omics in breeding programs to simultaneously address salt tolerance and production. To enable future manipulation, selection, and genetic improvement of sorghum with high yield and salt tolerance, here, we explore the potential positive correlations between the reliable indices of sorghum performance under salt stress at the phenotypic and genotypic level. We then explore the potential role of modern selection and genetic improvement programs in incorporating these linked salt tolerance and yield traits and propose a mechanism for future studies.


Assuntos
Tolerância ao Sal , Sorghum , Grão Comestível , Melhoramento Vegetal , Estresse Salino/genética , Tolerância ao Sal/genética , Sorghum/genética
5.
Physiol Mol Biol Plants ; 28(4): 763-774, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592482

RESUMO

Mineral nutrient deficiencies induce a cascade of physiological, morphological, and biochemical changes in plants which reduce vegetative growth. In this work, the impact of P and K concentration levels on tomato plant development grown in hydroponic culture was investigated. Root morphology, chlorophyll a fluorescence, phosphorus (P) and potassium (K) content, and shoot and root biomass were analyzed. Root morphology showed significant differences among the plants grown in hydroponic culture with different concentrations of P and K. Plant root/shoot dry biomass ratio decreased by 22 and 35% for P15K0 and P30K0, respectively, compared to the control (P30K232). The deficiency of P and K (individually or both) reduced significantly the root mass density parameter. For example, root mass density decreased by 38% at P15K0 treatment compared to control. Correlation analysis showed that the P and K content ratio in shoot and root was significantly and positively correlated with root volume. Deficiencies in K and P decreased the relative size of the PSI final electron acceptor pool and the electron flow on the acceptor side of PSI. Tomato growth response depend on the availability of P and K, however, interactions between these two nutrients could influence their uptake and utilization.

6.
J Environ Manage ; 279: 111632, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309111

RESUMO

After press separation of the liquid and solid digestate from an agricultural biogas plant, pyrolysis of solid anaerobic digestate was carried out (i.e., at 500 °C, 1h, and 10 °C/min) to produce biochar (37.6 wt%), bio-oil (33.7 wt%) and syngas (29.3 wt%). The organic phase of bio-oil and syngas exhibited high and low heating values of 28.4 MJ/kg and 12.9 MJ/Nm3, respectively. Then, the synergy of coupling biochar with liquid digestate for agronomic purposes was investigated by leaching experiment and growth plant tests on wheat. Leaching experiments using combination of liquid digestate (170 kg N/ha) and biochar demonstrated that biochar addition increases the cumulative leaching of all nutrients, except nitrate, that have a significant decrease of 82% and 91%, respectively at 50 and 100 t/ha, compared to soil treated only with liquid digestate. The co-application of biochar with liquid digestate on growth wheat plant tests demonstrated that biochar application at 50 t/ha did not exhibit a negative impact on the relative seed germination and improved aerial dry biomass production (up to 27.5%) compared to soil with only liquid digestate addition.


Assuntos
Pirólise , Solo , Agricultura , Anaerobiose , Biomassa , Carvão Vegetal
7.
Photosynth Res ; 136(3): 291-301, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29124653

RESUMO

The main objective of this study was to evaluate the effects of salt stress on the photosynthetic electron transport chain using two chickpea lines (Cicer arietinum L.) differing in their salt stress tolerance at the germination stage (AKN 87 and AKN 290). Two weeks after sowing, seedlings were exposed to salt stress for 2 weeks and irrigated with 200 ml of 200 mM NaCl every 2 days. The polyphasic OJIP fluorescence transient and the 820-nm transmission kinetics (photosystem I) were used to evaluate the effects of salt stress on the functionality of the photosynthetic electron transport chain. It was observed that a signature for salt stress was a combination of a higher J step (VJ), a smaller IP amplitude, and little or no effect on the primary quantum yield of PSII (φPo). We observed for AKN 290 a shorter leaf life cycle, which may represent a mechanism to cope with salt stress. For severely salt-stressed leaves, an inhibition of electron flow between the PQ pool and P700 was found. The data also suggest that the properties of electron flow beyond PSI are affected by salt stress.


Assuntos
Cicer/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Clorofila/metabolismo , Clorofila A , Cicer/efeitos dos fármacos , Fluorescência , Pisum sativum/efeitos dos fármacos , Pisum sativum/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Tolerância ao Sal , Plântula/efeitos dos fármacos , Plântula/fisiologia , Especificidade da Espécie , Estresse Fisiológico
8.
Molecules ; 23(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545090

RESUMO

This experimental work aims at investigating the effects of milling; sieving; and electrostatic separation on the biochemical methane potential of two olive pomaces from traditional olive oil extraction (M) and from a three-phase system (T). Sieving proved to be efficient for increasing the soluble chemical oxygen demand in the smallest fractions of the sieve of both M (62%) and T (78%) samples. The positive fraction following electrostatic separation also enhanced chemical oxygen demand (COD) solubilisation by 94%, in comparison to sample T milled at 4 mm. Sieve fractions with a size greater than 0.9 mm contained 33% and 47% less lipids for the M and T biomasses; respectively. Dry fractionation modified sample properties as well as lipid and fiber distribution. Concomitantly; milling increased the accessibility and facilitated the release of organic matter. The energy balance was positive after knife milling and sieving; while ball milling and ultrafine milling proved to be inefficient.


Assuntos
Olea , Azeite de Oliva , Resíduos Sólidos , Biodegradação Ambiental , Biomassa , Resíduos Industriais , Metano
9.
Cryobiology ; 74: 160-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988167

RESUMO

Parmelina tiliacea lichens kept in the wet and dry state were stored in liquid nitrogen for 1 week and the subsequent recovery of their photosynthetic apparatus was followed. The chlorophyll a fluorescence rise and the maximum quantum yield of primary photochemistry φPo (FV/FM) were analysed for this purpose. Storage of wet thalli for 1 week in liquid nitrogen led to an impairment of photosystem II and probably the photosynthetic apparatus as a whole, from which the thalli did not recover over time. Thalli exposed in the dry state thalli were far less affected by the treatment and recovered well. These results indicate that the thalli are extremely tolerant to liquid nitrogen temperatures only in the dry state.


Assuntos
Clorofila/química , Parmeliaceae/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Temperatura Baixa , Nitrogênio , Parmeliaceae/enzimologia , Fotoquímica
10.
Curr Microbiol ; 72(6): 692-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26868257

RESUMO

Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Biomassa , Chlorella vulgaris/química , Clorofila/química , Clorofila/metabolismo , Clorofila A , Fluorescência , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Scenedesmus/química
11.
Arch Environ Contam Toxicol ; 68(3): 510-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25392153

RESUMO

Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated in Lemna gibba plants exposed for 7 days to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) at 0, 12.5, 25, 50, 100, 200 or 400 µg mL(-1). At < 400 µg mL(-1) of SPION exposure, toxicity was indicated by decrease of chlorophyll content, deterioration of photosystem II (PSII) functions, strong production of reactive oxygen species (ROS), and inhibition of growth rate based on fresh weight (52-59 %) or frond number (32-49 %). The performance index of PSII activity was the most sensitive biomarker of PSII functions and decreased by 83, 86, and 79 % for SPION-1, SPION-2, and SPION-3, respectively. According to the change of these biomarkers, the exposure of SPION suspensions to L. gibba caused several alterations to the entire plant cellular system, which may come from both the uptake of nanoparticles and metal ions in the soluble fraction. Our results, based on the change of several biomarkers, showed that these SPION have a complex toxic mode of action on the entire plant system and therefore affects its viability. Therefore, the plant model L. gibba was shown to be a sensitive bioindicator of SPION cellular toxicity and thus can be used in the development of a laboratory bioassay toxicity testing.


Assuntos
Araceae/efeitos dos fármacos , Compostos Férricos/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Nanopartículas , Estresse Oxidativo , Espécies Reativas de Oxigênio
12.
Heliyon ; 10(3): e25543, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333855

RESUMO

The Mediterranean agricultural sector faces many challenges related to water and mineral resource use for crop production and food security for an exponentially growing population. Phosphorus drip fertigation has recently emerged as an efficient and sustainable technique to improve water and nutrient use efficiency under such challenging pedoclimatic conditions. The classical methods for administering standard P fertilizers to crops (broadcasting and banding) have shown their limitations in terms of P acquisition and use efficiency. More than 60 % of applied P through dry P fertilizers is rapidly transformed into recalcitrant P forms and subsequently lost by soil erosion increasing the effects of P eutrophication issues on the ecosystem's sustainability. The emergence of new advanced irrigation technologies like high-frequent drip irrigation must be accompanied by the development of new P formulations with high water solubility and greater P use efficiency. This review illustrates the state of the art for P fertilizers used in Mediterranean agriculture in the last decades. An overall description is provided for the P fertilizer formulas, their physicochemical properties, as well as their suitability for drip fertigation systems and the consequent effects of their application on photosynthesis, plant growth, and crop productivity. The key factors influencing P fertilizer transformations and use efficiency under drip fertigation systems are extensively discussed in this review with a focus on the differences between orthophosphate and polyphosphate formulations.

13.
Plant Physiol Biochem ; 199: 107718, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37182277

RESUMO

Iron (Fe) deficiency is one of the most common problems of soybean. It causes upper leaves yellowing, interveinal chlorosis, stunted growth and yield loss. Manganese (Mn) deficiency affects the reactions in the oxygen evolving complex (OEC) of photosystem II and increase the accumulation of reactive oxygen species (ROS). The aim of this research is to study the effect of Fe and Mn deficiencies applied separately and simultaneously on physiological, biochemical, nutritional and growth (morphological) parameters of soybean cultivars (Glycine max L.). The experiment was conducted in nutrient hydroponic solution lacking Fe or Mn or both Fe and Mn. Chlorophyll content index (CCI) and chlorophyll a fluorescence were measured through time to detect nutritional disorders at an early growth stage before the apparition of visual symptoms. The results showed that Fe and Mn deficiencies had a significant negative effect on the photosynthetic efficiency, CCI, stomatal conductance, protein content and shoot/root nutrient uptakes. Iron and manganese stress conditions were found to enhance the accumulation of secondary metabolites and increase the antioxidant activity such as total polyphenol content (TPC), malondialdehyde (MDA) and superoxide dismutase (SOD). These impacts were more accentuated when Fe and Mn stress were applied simultaneously than when any of the deficiencies was applied alone. More than that, Mn stress alone did not significantly affect the biomass accumulation. The obtained results showed that, in hydroponic conditions, iron and manganese rational fertilization can improve the studied parameters.


Assuntos
Glycine max , Manganês , Manganês/metabolismo , Glycine max/metabolismo , Clorofila A/metabolismo , Ferro/metabolismo , Superóxido Dismutase/metabolismo , Clorofila/metabolismo , Folhas de Planta/metabolismo
14.
Environ Sci Pollut Res Int ; 30(48): 106083-106098, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723396

RESUMO

The impact of climate change on water resource availability and soil quality is more and more emphasized under the Mediterranean basin, mostly characterized by drought and extreme weather conditions. The present study aims to investigate how electromagnetic induction technique and soil mapping combined with crop yield data can be used to optimize phosphorus (P) use efficiency by chickpea crop under drip fertigation system. The study was carried out on a 2.5-ha agricultural plot and the agronomic experiments in two growing cycles of chickpea crop. Soil spatial variability was first assessed by the measurement of soil apparent electrical conductivity (ECa) using the CMD Mini-Explorer sensor, and then, soil physicochemical properties were evaluated based on an oriented soil sampling scheme to explore other soil spatial variabilities influencing chickpea yield and quality. Data from the first agronomic experiment were used in geostatistical, multiple linear regression (MLR), and fuzzy c-means unsupervised classification algorithms to properly identify P drip fertigation management zones (MZs). Results from the Person's correlation analysis revealed that chickpea grain yield was more influenced by soil ECa (r = - 0.56), pH (r = - 0.84), ECe (r = - 0.6), P content (r = 0.72), and calcium (Ca) content (r = - 0.83). The proposed MLR-based model to predict chickpea grain yield showed good performances with a normalized root mean square error (NRMSE) of 0.11% and a coefficient of determination (R2) equal to 0.69. The identified MZs were verified by the one-way variance analysis for the studied soil and plant attributes, revealing that the first MZ1 presents a high grain yield, high soil P content, and low ECa. The low fertility MZ2 located in the south part of the studied site presented a low chickpea grain yield due to the low P content and the high ECa. Moreover, the application of P-variable rate fertigation regimes in the second field experiment significantly improved P use efficiency, chickpea grain yield, seed quality, and farmer income by 18%, 12%, 9%, and 136 $/ha, respectively, as compared to the conventional drip fertigation practices. The approach proposed in this study can greatly contribute to optimizing agro-input use efficiency under drip fertigation system, thereby improving farmers' incomes, preserving the ecosystem, and ensuring sustainable cropping systems in the Mediterranean climate.


Assuntos
Cicer , Solo , Humanos , Solo/química , Fósforo/análise , Ecossistema , Agricultura , Fenômenos Eletromagnéticos , Grão Comestível/química
15.
Sci Rep ; 13(1): 11212, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433920

RESUMO

By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.


Assuntos
Antioxidantes , Fertilizantes , Triticum , Salinidade , Fósforo
16.
PLoS One ; 18(3): e0283437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961864

RESUMO

Until now, the solubilization capacities of insoluble mineral P by soil microorganisms have been screened in vitro with media containing NH4+ as a nitrogen source. This presence of NH4+ will lead to an acidification of the medium responsible for the solubilization of the insoluble P. However, besides proton release, the production of organic acids can play a very important role in the release of free P. This physiological mechanism can largely depend on the source of nitrogen (NH4+vs NO3-) assimilated by the bacteria but the influence of the N source on the production of organic acids has yet to be studied. Our aim was to investigate if the N source assimilated by bacteria and the soil characteristics such as the dominant N source (NH4+vs NO3-) and CaCO3 contents might influence the bacterial capacities to solubilize rock phosphate. To fill this objective, we screened the capacity of bacteria isolated from 3 soils to solubilize rock phosphate in vitro in presence of NH4+or NO3-. Then, we selected the most efficient bacterial strains to identify and quantify the release of organic anions into the medium. Among the two hundred and forty-three bacterial strains isolated from the 3 soils, nine and seven isolates were identified with the highest % rock phosphate-solubilization values with NH4+ or NO3- as the sole N-source. Only one strain was able to release free Pi with NH4+ or NO3- as the sole N-source. The most predominant organic acids released by almost all isolates were gluconic acid, lactic acid, glycolic acid, acetic acid, formic acid and pyruvic acid regardless the N-source. However, with NO3- as source of N, the highest concentrations on those acids were found together with the highest release of free Pi into the medium. Molecular analysis of 16S rRNA indicated that almost all strains belonged to Bacillus and Paenibacillus genera. The PCA analysis between soil properties and bacterial capacities to release organic acids and free Pi also revealed that soil factors such as CaCO3 and soil NO3- content positively influenced the release of organic acids by bacteria grown in vitro. Our results concluded that the bacterial rock phosphate-solubilization was intimately related to organic acids production which in turn seemed to be driven by the assimilation of NO3- by bacteria. Therefore, the N-source might be considered a key factor to take into consideration during the screening and selection of suitable strains involved in the P-solubilization.


Assuntos
Nitratos , Fosfatos , Solo , Solubilidade , RNA Ribossômico 16S/genética , Carbonato de Cálcio , Bactérias , Nitrogênio , Microbiologia do Solo
17.
Front Plant Sci ; 14: 1146658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441174

RESUMO

In the context of climate change, quinoa represents a potential alternative crop for increasing crops diversity, agricultural productivity, and farmer's income in semi-arid regions. However, appropriate crop management practices under limited water supply are still poorly documented. Quinoa, like other cultivated crops, needs optimum quantities of nutrients, especially nitrogen (N), phosphorus (P), and potassium (K), for better growth and high grain yield. To determine the adequate levels of nutrient requirements and their effect on quinoa growth and productivity, a field experiment was conducted during two growing seasons (2020-2021 and 2021-2022). The experiment was conducted in Ben Guerir region, north-central Morocco, and consisted of a randomized complete block design (RCBD) with three replications. The treatments studied consist of a combination of four N rates (0, 40, 80, and 120 kg ha-1), three P rates (0, 30, and 60 kg P2O5 ha-1), and three K rates (0, 60, and 120 kg K2O ha-1). The physiological, nutritional, and production parameters of quinoa were collected and analyzed. The results showed that the highest total biomass (3.9 t ha-1) and grain yield (0.8 t ha-1) under semi-arid conditions were obtained with 40 kg N ha-1, 60 kg P2O5 ha-1, and 120 kg K2O ha-1. The application of 40-60-120 kg ha-1 of N-P2O5-K2O increased plant height by 44%, chlorophyll content index by 96%, total biomass by 134%, grain yield by 112%, and seed weight by 118%. Among the three macronutrients, N was the most limiting factor, followed by K and P. Nutrients uptake data showed that quinoa needs 60 kg N, 26 kg P2O5, and 205 kg K2O to produce 1 t of grain yield. Our field results provide future recommendations for improving the agronomic and environmental sustainability of quinoa cultivation in dryland areas in Morocco.

18.
PLoS One ; 18(5): e0286046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224124

RESUMO

Phosphorus deficiency induces biochemical and morphological changes which affect crop yield and production. Prompt fluorescence signal characterizes the PSII activity and electron transport from PSII to PSI, while the modulated light reflection at 820 (MR 820) nm investigates the redox state of photosystem I (PSI) and plastocyanin (PC). Therefore, combining information from modulated reflection at 820 nm with chlorophyll a fluorescence can potentially provide a more complete understanding of the photosynthetic process and integrating other plant physiological measurements may help to increase the accuracy of detecting the phosphorus deficiency in wheat leaves. In our study, we combined the chlorophyll a fluorescence and MR 820 signals to study the response of wheat plants to phosphorus deficiency as indirect tools for phosphorus plant status characterization. In addition, we studied the changes in chlorophyll content index, stomatal conductance (gs), root morphology, and biomass of wheat plants. The results showed an alteration in the electron transport chain as a specific response to P deficiency in the I-P phase during the reduction of the acceptor side of PSI. Furthermore, P deficiency increased parameters related to the energy fluxes per reaction centers, namely ETo/RC, REo/RC, ABS/RC, and DIo/RC. P deficiency increased the values of MRmin and MRmax and decreased νred, which implies that the reduction of PSI and PC became slower as the phosphorus decreased. The principal component analysis of the modulated reflection and chlorophyll a fluorescence parameters, with the integration of the growth parameters as supplementary variables, accounted for over 71% of the total variance in our phosphorus data using two components and provided a reliable information on PSII and PSI photochemistry under P deficiency.


Assuntos
Clorofila , Triticum , Clorofila A , Biomassa , Fósforo
19.
Chemosphere ; 341: 140121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690564

RESUMO

Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Humanos , Oligoelementos/análise , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Metais Pesados/análise
20.
Photosynth Res ; 111(3): 303-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22373736

RESUMO

Thalli of the foliose lichen species Parmelina tiliacea were studied to determine responses of the photosynthetic apparatus to high temperatures in the dry and wet state. The speed with which dry thalli were activated by water following a 24 h exposure at different temperatures decreased as the temperature was increased. But even following a 24 h exposure to 50 °C the fluorescence induction kinetics OJIP reflecting the reduction kinetics of the photosynthetic electron transport chain had completely recovered within 128 min. Exposure of dry thalli to 50 °C for 24 h did not induce a K-peak in the fluorescence rise suggesting that the oxygen evolving complex had remained intact. This contrasted strongly with wet thalli were submergence for 40 s in water of 45 °C inactivated most of the photosystem II reaction centres. In wet thalli, following the destruction of the Mn-cluster, the donation rate to photosystem II by alternative donors (e.g. ascorbate) was lower than in higher plants. This is associated with the near absence of a secondary rise peak (~1 s) normally observed in higher plants. Analysing the 820 nm and prompt fluorescence transients suggested that the M-peak (occurs around 2-5 s) in heat-treated wet lichen thalli is related to cyclic electron transport around photosystem I. Normally, heat stress in lichen thalli leads to desiccation and as consequence lichens may lack the heat-stress-tolerance-increasing mechanisms observed in higher plants. Wet lichen thalli may, therefore, represent an attractive reference system for the evaluation of processes related with heat stress in higher plants.


Assuntos
Ascomicetos/metabolismo , Transporte de Elétrons/fisiologia , Resposta ao Choque Térmico/fisiologia , Fotossíntese/fisiologia , Adaptação Fisiológica , Temperatura Alta , Líquens/metabolismo , Plantas/metabolismo , Temperatura , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA