Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 81(15): 3171-3186.e8, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171297

RESUMO

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/metabolismo , Fibroblastos/virologia , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Metilação , Camundongos , Camundongos Knockout , Alcamidas Poli-Insaturadas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Receptores Imunológicos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(9): e2319286121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38394244

RESUMO

Hydrogen (H2) and hydrogen peroxide (H2O2) play crucial roles as energy carriers and raw materials for industrial production. However, the current techniques for H2 and H2O2 production rely on complex catalysts and involve multiple intermediate steps. In this study, we present a straightforward, environmentally friendly, and highly efficient laser-induced conversion method for overall water splitting to simultaneously generate H2 and H2O2 at ambient conditions without any catalysts. The laser direct overall water splitting approach achieves an impressive light-to-hydrogen energy conversion efficiency of 2.1%, with H2 production rates of 2.2 mmol/h and H2O2 production rates of 65 µM/h in a limited reaction area (1 mm2) within a short real reaction time (0.36 ms/h). Furthermore, we elucidate the underlying physics and chemistry behind the laser-induced water splitting to produce H2 and H2O2. The laser-induced cavitation bubbles create an optimal microenvironment for water-splitting reactions because of the transient high temperatures (104 K) surpassing the chemical barrier required. Additionally, their rapid cooling rate (1010 K/s) hinders reverse reactions and facilitates H2O2 retention. Finally, upon bubble collapse, H2 is released while H2O2 remains dissolved in the water. Moreover, a preliminary amplification experiment demonstrates the potential industrial applications of this laser chemistry. These findings highlight that laser-based production of H2 and H2O2 from water holds promise as a straightforward, environmentally friendly, and efficient approach on an industrial scale beyond conventional chemical catalysis.

3.
J Immunol ; 210(9): 1314-1323, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946776

RESUMO

In mammals, the signaling adaptor mitochondrial antiviral signaling protein (MAVS) is a critical determinant in antiviral innate immunity. However, because of the lack of in vivo data, the physiological function of zebrafish mavs in response to viral infection is still not determined. In this study, we demonstrate that the long splicing isoform of zebrafish mavs promotes IFN regulatory factor 3 signaling and NF-κB signaling. Overexpression of this isoform of mavs enhances cellular antiviral responses. Disruption of mavs in zebrafish attenuates survival ratio on challenge with spring viremia of carp virus. Consistently, the antiviral-responsive genes and inflammatory genes are significantly reduced, and the replication of spring viremia of carp virus is increased in mavs-null zebrafish. Therefore, we provide in vivo evidence to support that zebrafish mavs is essential for antiviral innate immunity, similar to mammalian MAVS.


Assuntos
Antivirais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Antivirais/metabolismo , Viremia , Imunidade Inata , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
EMBO J ; 39(11): e103285, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32301534

RESUMO

RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agregados Proteicos , Sirtuínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Sirtuínas/genética
5.
J Immunol ; 209(6): 1165-1172, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002231

RESUMO

The signaling adaptor MAVS is a critical determinant in retinoic acid-inducible gene 1-like receptor signaling, and its activation is tightly controlled by multiple mechanisms in response to viral infection, including phosphorylation and ubiquitination. In this article, we demonstrate that zebrafish sirt5, one of the sirtuin family proteins, negatively regulates mavs-mediated antiviral innate immunity. Sirt5 is induced by spring viremia of carp virus (SVCV) infection and binds to mavs, resulting in attenuating phosphorylation and ubiquitination of mavs. Disruption of sirt5 in zebrafish promotes survival ratio after challenge with SVCV. Consistently, the antiviral responsive genes are enhanced, and the replication of SVCV is diminished in sirt5-dificient zebrafish. Therefore, we reveal a function of zebrafish sirt5 in the negative regulation of antiviral innate immunity by targeting mavs.


Assuntos
Sirtuínas , Peixe-Zebra , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antivirais , Imunidade Inata , Fosforilação , Rhabdoviridae , Sirtuínas/metabolismo , Tretinoína/metabolismo , Ubiquitinação , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Phys Chem Chem Phys ; 26(34): 22549-22557, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150538

RESUMO

The sliding ferroelectrics formed by rhombohedral-stacked transition metal dichalcogenides (R-TMDs) greatly broaden the ferroelectric candidate materials. However, the weak ferroelectricity and many failure behaviors (such as irreversible lattice strains or defects) regulated by applied stimuli hinder their application. Here we systematically explore the interface electronic and transport properties of R-MoS2-based van der Waals heterojunctions (vdWHJs) by first-principles calculations. We find that the polarization and the band non-degeneracy of 2R-MoS2 increase with decreasing interlayer distance (d1). Moreover, the polarization direction of graphene (Gra)/2R-MoS2 P↑ state can be switched with a small increase in d1 (about 0.124 Å) due to the weakening of the polarization field (Ep) by a built-in electric field (Ei). The equilibrium state of superposition (|Ep + Ei|) or weakening (|Ep - Ei|) can be modulated by interface distances, which prompts vertical strain-regulated polarization or Schottky barriers. Furthermore, Gra/2R-MoS2 and Gra/R-MoS2/WS2 vdW ferroelectric tunneling junctions (FTJs) demonstrate ultra-high tunneling electroresistance (TER) ratios of 1.55 × 105 and 2.61 × 106, respectively, as the polarization direction switches. Our results provide an avenue for the design of future R-TMD vdW FTJs.

7.
J Biol Chem ; 298(6): 101961, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452683

RESUMO

Egg-laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 α under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the hypoxia-inducible factor-mediated hypoxia signaling pathway; however, the posttranslational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of hypoxia-inducible factor-1 α. Notably, we demonstrate that the methylation mimic mutant of EGLN1 loses the capability to suppress the hypoxia signaling pathway, leading to the enhancement of cell proliferation and the oxygen consumption rate. Collectively, our data identify a novel modification of EGLN1 that is critical for inhibiting its enzymatic activity and which may benefit cellular adaptation to conditions of hypoxia.


Assuntos
Histona-Lisina N-Metiltransferase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Lisina , Animais , Catálise , Humanos , Hidroxilação , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Lisina/metabolismo , Metilação , Oxigênio/metabolismo , Processamento de Proteína Pós-Traducional
8.
Development ; 147(22)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33037038

RESUMO

The hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) are master regulators of the cellular response to O2. In addition to HIF1α and HIF2α, HIF3α is another identified member of the HIFα family. Even though the question of whether some HIF3α isoforms have transcriptional activity or repressive activity is still under debate, it is evident that the full length of HIF3α acts as a transcription factor. However, its function in hypoxia signaling is largely unknown. Here, we show that loss of hif3a in zebrafish reduced hypoxia tolerance. Further assays indicated that erythrocyte number was decreased because red blood cell maturation was impeded by hif3a disruption. We found that gata1 expression was downregulated in hif3a null zebrafish, as were several hematopoietic marker genes, including alas2, band3, hbae1, hbae3 and hbbe1 Hif3α recognized the hypoxia response element located in the promoter of gata1 and directly bound to the promoter to transactivate gata1 expression. Our results suggested that hif3a facilities hypoxia tolerance by modulating erythropoiesis via gata1 regulation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Eritrócitos/metabolismo , Eritropoese , Fator de Transcrição GATA1/metabolismo , Hipóxia/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo , Eritrócitos/patologia , Fator de Transcrição GATA1/genética , Hipóxia/genética , Hipóxia/patologia , Elementos de Resposta , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Development ; 147(18)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978241

RESUMO

Nedd8 is a ubiquitin-like protein that covalently conjugates to target proteins through neddylation. In addition to cullin-RING ligases, neddylation also modifies non-cullin proteins to regulate protein activity, stability and localization. However, the roles of NEDD8 remain largely unknown in vivo Here, we found that loss of nedd8 in female zebrafish led to defects in oogenesis, disrupted oocyte maturation and stimulated growth of the breeding tubercles (BTs) on the pectoral fins. The BTs are normally present in males, not females. However, the loss of one copy of ar can partially rescue the phenotypes displayed by nedd8-null female zebrafish. Further assays indicated that Nedd8 conjugates to Ar and Ar is neddylated at lysine 475 and lysine 862. Moreover, Nedd8 conjugation efficiently suppressed Ar transcriptional activity. Lysine 862 (K862) of Ar is the key site modified by neddylation to modulate Ar transcriptional activity. Thus, our results not only demonstrated that Nedd8 modulates ovarian maturation and the maintenance of female secondary sexual characteristics of female zebrafish in vivo, but also indicated that androgen signaling is strictly regulated by nedd8.


Assuntos
Proteína NEDD8/metabolismo , Ovário/metabolismo , Receptores Androgênicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Proteínas Culina/metabolismo , Feminino , Células HEK293 , Humanos , Lisina/metabolismo , Oócitos/metabolismo , Oogênese/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
10.
Fish Shellfish Immunol ; 137: 108712, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030559

RESUMO

MyD88-dependent pathway mediated by Toll-like receptor is one of the vital ways activating immune responses. In order to identify the role of MyD88-dependent signaling pathway in yellow catfish, the Pf_MyD88, Pf_IRAK4, Pf_IRAK1, Pf_TRAF6 and Pf_NFκB1 (p105) (Pf: abbreviation of Pelteobagrus fulvidraco) were cloned and characterized respectively. The Pf_MyD88, Pf_IRAK4, Pf_IRAK1 and Pf_TRAF6 were all highly conserved among species and showed the highest homology to that of Pangasianodon hypophthalmus. Pf_NFκB1 showed the highest homology to that of Ictalurus punetaus. All of the five genes showed similar expression patterns in various tissues, with the highest expression level in the liver. These genes also showed similar expression levels in different embryonic development stages, except Pf_IRAK4. The higher expression level was detected from fertilized eggs to 1 day post hatching (dph), lower expression from 3 dph to 30 dph. After stimulation of inactivated Aeromonas hydrophila, the mRNA expressions of Pf_MyD88, Pf_IRAK4, Pf_IRAK1, Pf_TRAF6 and Pf_NFκB1 were significantly increased at 24 h in the liver, spleen, head kidney and trunk kidney, suggesting that all the five genes were involved in the innate immune response of yellow catfish. These results showed that MyD88-dependent signaling pathway plays important roles for disease defensing in the innate immune response. Meanwhile, inactivated A. hydrophila can cause strong innate immune response, which provides theoretical bases for the application of inactivated vaccines in defense against bacterial diseases of teleost.


Assuntos
Peixes-Gato , Doenças dos Peixes , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Aeromonas hydrophila/fisiologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Peixes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA