Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Inorg Chem ; 61(36): 14403-14418, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044722

RESUMO

Research on new reaction routes and precursors to prepare catalysts for CO2 hydrogenation has enormous importance. Here, we report on the preparation of the permanganate salt of the urea-coordinated iron(III), [hexakis(urea-O)iron(III)]permanganate ([Fe(urea-O)6](MnO4)3) via an affordable synthesis route and preliminarily demonstrate the catalytic activity of its (Fe,Mn)Ox thermal decomposition products in CO2 hydrogenation. [Fe(urea-O)6](MnO4)3 contains O-coordinated urea ligands in octahedral propeller-like arrangement around the Fe3+ cation. There are extended hydrogen bond interactions between the permanganate ions and the hydrogen atoms of the urea ligands. These hydrogen bonds serve as reaction centers and have unique roles in the solid-phase quasi-intramolecular redox reaction of the urea ligand and the permanganate anion below the temperature of ligand loss of the complex cation. The decomposition mechanism of the urea ligand (ammonia elimination with the formation of isocyanuric acid and biuret) has been clarified. In an inert atmosphere, the final thermal decomposition product was manganese-containing wuestite, (Fe,Mn)O, at 800 °C, whereas in ambient air, two types of bixbyite (Fe,Mn)2O3 as well as jacobsite (Fe,Mn)T-4(Fe,Mn)OC-62O4), with overall Fe to Mn stoichiometry of 1:3, were formed. These final products were obtained regardless of the different atmospheres applied during thermal treatments up to 350 °C. Disordered bixbyite formed first with inhomogeneous Fe and Mn distribution and double-size supercell and then transformed gradually into common bixbyite with regular structure (and with 1:3 Fe to Mn ratio) upon increasing the temperature and heating time. The (Fe,Mn)Ox intermediates formed under various conditions showed catalytic effect in the CO2 hydrogenation reaction with <57.6% CO2 conversions and <39.3% hydrocarbon yields. As a mild solid-phase oxidant, hexakis(urea-O)iron(III) permanganate, was found to be selective in the transformation of (un)substituted benzylic alcohols into benzaldehydes and benzonitriles.

2.
Phys Chem Chem Phys ; 24(27): 16655-16670, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766396

RESUMO

When characterizing transition metal complexes and their functionalities, the importance of including the solvent as an active participant is becoming more and more apparent. Whereas many studies have evaluated long-range dispersion effects inside organic molecules and organometallics, less is known about their role in solvation. Here, we have analysed the components within solute-solvent and solvent-solvent interactions of one of the most studied iron-based photoswitch model systems, in two spin states. We find that long-range dispersion effects modulate the coordination significantly, and that this is accurately captured by density functional theory models including dispersion corrections. We furthermore correlate gas-phase relaxed complex-water clusters to thermally averaged molecular densities. This shows how the gas-phase interactions translate to solution structure, quantified through 3D molecular densities, angular distributions, and radial distribution functions. We show that finite-size simulation cells can cause the radial distribution functions to have artificially enlarged amplitudes. Finally, we quantify the effects of many-body interactions within the solvent shells, and find that almost a fifth of the total interaction energy of the solute-shell system in the high-spin state comes from many-body contributions, which cannot be captured by by pair-wise additive force field methods.

3.
J Chem Phys ; 157(22): 224201, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546808

RESUMO

We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.

4.
Inorg Chem ; 60(18): 13950-13954, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34498843

RESUMO

The Fe(II) low-spin (LS; 1A1g, t2g6eg0) → high-spin (HS; 5T2g, t2g4eg2) light-induced excited spin state trapping (LIESST) mechanism solely involving metal-centered states is revealed by synergistic spin-vibronic dynamics simulations. For the octahedral [Fe(NCH)6]2+ complex, we identify an initial ∼100 fs 1T1g → 3T2g intersystem crossing, controlled by vibronic coupling to antisymmetric Fe-N stretching motion. Subsequently, population branching into 3T1g, 5T2g (HS), and 1A1g (LS) is observed on a subpicosecond time scale, with the dynamics dominated by coherent Fe-N breathing wavepackets. These findings are consistent with ultrafast experiments, methodologically establish a new state of the art, and will give a strong impetus for further intriguing dynamical studies on LS → HS photoswitching.

5.
Phys Chem Chem Phys ; 23(18): 10964-10977, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913464

RESUMO

We present a computational study on nonadiabatic excited-state dynamics initiated from the 3p Rydberg states of trimethylamine (TMA). We utilise a methodology based on full-dimensional (39 D) trajectory surface-hopping (TSH) simulations, in which propagation is carried out on on-the-fly density functional theory (DFT)/time-dependent DFT (TD-DFT) potentials. Both our electronic structure benchmarks to high-level ab initio methods (EOM-CCSD, CASPT2) and TSH simulations demonstrate high-accuracy of the applied CAM-B3LYP functional for the description of Rydberg excited states. Based on our excited-state simulations, we construct the following mechanistic picture: when pumped resonantly to the 3p Rydberg manifold, TMA coherently vibrates along the planarisation mode with a period of 104 fs and an exponential coherence decay time constant of 240 fs. Nonadiabatic dynamics occur on a faster (∼1 ps) and a slower (∼3 ps) timescale, along the N-C stretching mode by mixing with a dissociative σN-C* state. As a minor relaxation channel, 3p → 3s internal conversion occurs via branching at the σN-C*/3s intersection. We find that photodissociaton is hardly observable within 3 ps (1%), which is a failure of the range-separated hybrid CAM-B3LYP functional, as a consequence of its static electron correlation deficiency at long range. In contrast, pure DFT (GGA-BLYP) provides an accurate long-range description (19% dissociation yield), also supported by comparison to recent ultrafast experiments, even if the Rydberg state energies are significantly underestimated (>1 eV). Finally, we reveal the crucial role of vibrational coherence and energy transfer from the planarisation mode for N-C bond activation and resulting nonadiabatic dynamics. The present work illustrates the importance of nuclear-electronic coupling for excited-state dynamics and branching at conical intersections.

7.
Inorg Chem ; 58(14): 9341-9350, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241335

RESUMO

We have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)2]2+ (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the 5T2/3T1 crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kß X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the 5T2 state as the lowest energy excited state of this compound. Geometric changes associated with the photoinduced ligand-field state conversion have also been monitored with extended X-ray absorption fine structure. The data show the typical average Fe-ligand bond length elongation of ∼0.18 Å for a 5T2 state and suggest a high anisotropy of the primary coordination sphere around the metal center in the excited 5T2 state, in stark contrast to the nearly perfect octahedral symmetry that characterizes the low-spin 1A1 ground state structure. This study illustrates how the application of time-resolved X-ray techniques can provide insights into the electronic structures of molecules-in particular, transition metal complexes-that are difficult if not impossible to obtain by other means.

8.
Phys Chem Chem Phys ; 21(7): 4082-4095, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30719515

RESUMO

In this work, we investigate the excited-state solute and solvation structure of [Ru(bpy)3]2+, [Fe(bpy)3]2+, [Fe(bmip)2]2+ and [Cu(phen)2]+ (bpy = 2,2'-bipyridine; bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine; phen = 1,10-phenanthroline) transition metal complexes (TMCs) in terms of solute-solvent radial distribution functions (RDFs) and evaluate the performance of some of the most popular partial atomic charge (PAC) methods for obtaining these RDFs by molecular dynamics (MD) simulations. To this end, we compare classical MD of a frozen solute in water and acetonitrile (ACN) with quantum mechanics/molecular mechanics Born-Oppenheimer molecular dynamics (QM/MM BOMD) simulations. The calculated RDFs show that the choice of a suitable PAC method is dependent on the coordination number of the metal, denticity of the ligands, and type of solvent. It is found that this selection is less sensitive for water than ACN. Furthermore, a careful choice of the PAC method should be considered for TMCs that exhibit a free direct coordination site, such as [Cu(phen)2]+. The results of this work show that fast classical MD simulations with ChelpG/RESP or CM5 PACs can produce RDFs close to those obtained by QM/MM MD and thus, provide reliable solvation structures of TMCs to be used, e.g. in the analysis of scattering data.

9.
J Chem Phys ; 151(10): 104307, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521084

RESUMO

Simulation of the ultrafast excited-state dynamics and elastic X-ray scattering of the [Fe(bmip)2]2+ [bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-4-pyridine] complex is presented and analyzed. We employ quantum wavepacket dynamics simulations on a 5-dimensional potential energy surface (PES) calculated by time-dependent density functional theory with 26 coupled diabatic states. The simulations are initiated by explicit inclusion of a time-dependent electromagnetic field. In the case of resonant excitation into singlet metal-to-ligand charge transfer (1MLCT) states, kinetic (exponential) population dynamics are observed with small nuclear motion. In agreement with transient optical absorption spectroscopy experiments, we observe a subpicosecond 1MLCT → 3MLCT intersystem crossing and a subsequent decay into triplet metal-centered (3MC) states on a picosecond time scale. The simulated time-resolved difference scattering signal is dominated by the 3MC component, for which the structural distortions are significant. On the other hand, excitation into 1MC states leads to ballistic (nonexponential) population dynamics with strong nuclear motion. The reason for these ballistic dynamics is that in this case, the excitation occurs into a nonequilibrium region, i.e., far from the minimum of the 1MC PES. This results in wavepacket dynamics along the principal breathing mode, which is clearly visible in both the population dynamics and difference scattering. Finally, the importance of decomposing the difference scattering into components by electronic states is highlighted, information which is not accessible from elastic X-ray scattering experiments.

10.
J Chem Phys ; 151(12): 124114, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575192

RESUMO

As a demonstration of the analysis of the electronic structure and the nuclear dynamics from time-resolved near-edge X-ray absorption fine structure (TR-NEXAFS), we present the TR-NEXAFS spectra of pyrazine following the excitation to the 1B2u(ππ*) state. The spectra are calculated combining the frozen-core/core-valence separated equation-of-motion coupled cluster singles and doubles approach for the spectral signatures and the multiconfiguration time-dependent Hartree method for the wave packet propagation. The population decay from the 1B2u(ππ*) state to the 1B3u(nπ*) and 1Au(nπ*) states, followed by oscillatory flow of population between the 1B3u(nπ*) and 1Au(nπ*) states, is interpreted by means of visualization of the potential energy curves and the reduced nuclear densities. By examining the electronic structure of the three valence-excited states and the final core-excited states, we observe that the population dynamics is explicitly reflected in the TR-NEXAFS spectra, especially when the heteroatoms are selected as the X-ray absorption sites. This work illustrates the feasibility of extracting fine details of molecular photophysical processes from TR-NEXAFS spectra by using currently available theoretical methods.

12.
Phys Rev Lett ; 117(1): 013002, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419566

RESUMO

We study the structural dynamics of photoexcited [Co(terpy)_{2}]^{2+} in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps.

13.
Molecules ; 21(2): 235, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26907233

RESUMO

Characterizing the geometric and electronic structures of individual photoexcited dye molecules in solution is an important step towards understanding the interfacial properties of photo-active electrodes. The broad family of "red sensitizers" based on osmium(II) polypyridyl compounds often undergoes small photo-induced structural changes which are challenging to characterize. In this work, X-ray transient absorption spectroscopy with picosecond temporal resolution is employed to determine the geometric and electronic structures of the photoexcited triplet state of [Os(terpy)2](2+) (terpy: 2,2':6',2″-terpyridine) solvated in methanol. From the EXAFS analysis, the structural changes can be characterized by a slight overall expansion of the first coordination shell [OsN6]. DFT calculations supports the XTA results. They also provide additional information about the nature of the molecular orbitals that contribute to the optical spectrum (with TD-DFT) and the near-edge region of the X-ray spectra.


Assuntos
Corantes/química , Substâncias Macromoleculares/química , Compostos de Ósmio/química , Soluções/química , Eletrodos , Estrutura Molecular , Teoria Quântica , Espectroscopia por Absorção de Raios X
14.
J Phys Chem Lett ; 15(13): 3627-3638, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530393

RESUMO

Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through "hot" charge transfer down to the attosecond time scale.

15.
Phys Chem Chem Phys ; 15(26): 11088-98, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23719632

RESUMO

The sensitivity of the 1s X-ray emission and high-energy-resolution fluorescence-detected X-ray absorption spectroscopies (XES and HERFD-XAS) to resolve the variations in the chemical state (electronic structure and local coordination) of Br has been investigated for a selected set of compounds including NaBrO3, NH4Br and C2H4Br2 (1,2-dibromoethane). For the Br K-edge XAS, employing the HERFD mode significantly increases the energy resolution, which demonstrates that with a crystal spectrometer used as a detector the absorption technique becomes a more powerful analytical tool. In the case of XES, the experimental results as well as the density functional theory (DFT) modeling both show that the chemical sensitivity of the main 1s diagram emission lines (Kα1,2 and Kß1,3) is rather limited. However, the valence-to-core (Kß2) region of XES displays significant shape and intensity variations, as expected for transitions having the same final states as those of photoemission spectroscopy. The spectra are in good agreement with the molecular orbital description delivered by DFT calculations. Calculations for an extended series of Br compounds confirm that valence-to-core XES can serve as a probe for chemical analysis, and, being a hard X-ray photon-in/photon-out technique, it is particularly well-suited for in situ investigations of molecular transformations, even on the ultrafast time scales down to femtosecond time resolution.


Assuntos
Bromo/química , Bromatos/química , Brometos/química , Dibrometo de Etileno/química , Modelos Moleculares , Compostos de Amônio Quaternário/química , Compostos de Sódio/química , Espectrometria por Raios X
16.
Commun Chem ; 6(1): 7, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36697805

RESUMO

It has long been known that irradiation with visible light converts Fe(II) polypyridines from their low-spin (singlet) to high-spin (quintet) state, yet mechanistic interpretation of the photorelaxation remains controversial. Herein, we simulate the full singlet-triplet-quintet dynamics of the [Fe(terpy)2]2+ (terpy = 2,2':6',2"-terpyridine) complex in full dimension, in order to clarify the complex photodynamics. Importantly, we report a branching mechanism involving two sequential processes: a dominant 3MLCT→3MC(3T2g)→3MC(3T1g)→5MC, and a minor 3MLCT→3MC(3T2g)→5MC component. (MLCT = metal-to-ligand charge transfer, MC = metal-centered). While the direct 3MLCT→5MC mechanism is considered as a relevant alternative, we show that it could only be operative, and thus lead to competing pathways, in the absence of 3MC states. The quintet state is populated on the sub-picosecond timescale involving non-exponential dynamics and coherent Fe-N breathing oscillations. The results are in agreement with the available time-resolved experimental data on Fe(II) polypyridines, and fully describe the photorelaxation dynamics.

17.
Struct Dyn ; 10(3): 034102, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250952

RESUMO

The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck-Condon point.

18.
Adv Sci (Weinh) ; 10(21): e2206880, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196414

RESUMO

Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.

19.
J Chem Theory Comput ; 18(3): 1329-1339, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35199532

RESUMO

A new theoretical approach is presented and applied for the simulation of Fe(II) low-spin (LS, singlet, t2g6eg0) → high-spin (HS, quintet, t2g4eg2) photoswitching dynamics of the octahedral model complex [Fe(NCH)6]2+. The utilized synergistic methodology heavily exploits the strengths of complementary electronic structure and spin-vibronic dynamics methods. Specifically, we perform 3D quantum dynamics (QD) and full-dimensional trajectory surface hopping (TSH, in conjunction with a linear vibronic coupling model), with the modes for QD selected by TSH. We follow a hybrid approach which is based on the application of time-dependent density functional theory (TD-DFT) excited-state potential energy surfaces (PESs) and multiconfigurational second-order perturbation theory (CASPT2) spin-orbit couplings (SOCs). Our method delivers accurate singlet-triplet-quintet intersystem crossing (ISC) dynamics, as assessed by comparison to our recent high-level ab initio simulations and related time-resolved experimental data. Furthermore, we investigate the capability of our simulations to identify the location of ISCs. Finally, we assess the approximation of constant SOCs (calculated at the Franck-Condon geometry), whose validity has central importance for the combination of TD-DFT PESs and CASPT2 SOCs. This efficient methodology will have a key role in simulating LS → HS dynamics for more complicated cases, involving higher density of states and varying electronic character, as well as the analysis of ultrafast experiments.

20.
Struct Dyn ; 8(2): 024101, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33786337

RESUMO

We assess the performance of different protocols for simulating excited-state x-ray absorption spectra. We consider three different protocols based on equation-of-motion coupled-cluster singles and doubles, two of them combined with the maximum overlap method. The three protocols differ in the choice of a reference configuration used to compute target states. Maximum-overlap-method time-dependent density functional theory is also considered. The performance of the different approaches is illustrated using uracil, thymine, and acetylacetone as benchmark systems. The results provide guidance for selecting an electronic structure method for modeling time-resolved x-ray absorption spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA