Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 11(22): 15860-15873, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824795

RESUMO

We aimed to infer ancestral area and historical colonization of Lobelia columnaris in the sky islands of Bioko and Cameroon through dated phylogeny using chloroplast genomes. Specifically, we aim to answer the following questions: (1) What are the phylogenetic relationships among Bioko Island and Cameroon populations? (2) Are the older populations found in the older sky islands? We assembled novel plastomes from 20 individuals of L. columnaris from 5 mountain systems. The plastome data were explored with phylogenetic analyses using Maximum Likelihood and Bayesian Inference. The populations of L. columnaris have a monophyletic origin, subdivided into three plastomes-geographic clades. The plastid phylogenomic results and age of the sky islands indicate that L. columnaris colonized first along with the Cameroon Volcanic Line's young sky islands of Bioko. The crown group (1.54 Ma) split the population in Bioko and mainland Cameroon. It is possible that Bioko was the ancestral area and likely isolated during cold and dry conditions in forest refugia. Presumably, the colonization history occurred during the middle-late Pleistocene from South Bioko's young sky island to North Bioko and the northern old sky islands in Cameroon. Furthermore, the central depression with lowland forest between North and South Bioko is a current geographic barrier that keeps separating the populations of Bioko from each other. Also, the shallow sea channel keeps isolated the populations of Bioko and the mainland populations. The Pleistocene climatic oscillations led to the divergence of the Cameroon and Bioko populations into three clades. L. columnaris colonized the older sky islands in mainland Cameroon after establishment in Bioko's younger sky islands. Contrary to expectations, the biogeography history was an inverse progression with respect to the age of the Afromontane sky islands.

2.
FEMS Microbiol Ecol ; 69(2): 274-87, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19508503

RESUMO

Interactions between host tree species and ectomycorrhizal fungi are important in structuring ectomycorrhizal communities, but there are only a few studies on host influence of congeneric trees. We investigated ectomycorrhizal community assemblages on roots of deciduous Quercus crassifolia and evergreen Quercus laurina in a tropical montane cloud forest, one of the most endangered tropical forest ecosystems. Ectomycorrhizal fungi were identified by sequencing internal transcribed spacer and partial 28S rRNA gene. We sampled 80 soil cores and documented high ectomycorrhizal diversity with a total of 154 taxa. Canonical correspondence analysis indicated that oak host was significant in explaining some of the variation in ectomycorrhizal communities, despite the fact that the two Quercus species belong to the same red oak lineage (section Lobatae). A Tuber species, found in 23% of the soil cores, was the most frequent taxon. Similar to oak-dominated ectomycorrhizal communities in temperate forests, Thelephoraceae, Russulaceae and Sebacinales were diverse and dominant.


Assuntos
Biodiversidade , Micorrizas/genética , Quercus/microbiologia , Microbiologia do Solo , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Micorrizas/classificação , Raízes de Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Solo/análise , Especificidade da Espécie , Árvores/microbiologia , Clima Tropical
3.
Mycorrhiza ; 18(8): 375-383, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18704515

RESUMO

The ecological importance of ectomycorrhizal (EM) fungi in tropical ecosystems is increasingly recognized, but few studies have used molecular methods to examine EM fungal communities in tropical forests. The diversity and composition of the EM community on Quercus crassifolia in a tropical montane cloud forest in southern Mexico were characterized using DNA sequencing of single root tips. Individual root tips commonly harbored multiple fungal species that resulted in mixed polymerase chain reaction (PCR) products. By cloning and performing gel extractions on mixed PCR samples, we identified two or more EM fungi on 26% of the root tips. When non-EM fungi were considered, this figure increased to 31% of root tips. A total of 44 EM taxa and nine non-EM taxa were detected on roots from 21 soil cores (104 root tips). Taxa in the families Russulaceae, Cortinariaceae, Inocybaceae, and Thelephoraceae were frequent. This is the first study to characterize the belowground EM community in a tropical montane cloud forest.


Assuntos
Meristema/microbiologia , Micorrizas/fisiologia , Quercus/microbiologia , Árvores/microbiologia , Clima Tropical , Biodiversidade , México , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA