Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Curr Genet ; 68(3-4): 407-427, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35776170

RESUMO

The multiprotein Fab1p/PIKfyve-complex regulating the abundance of the phospholipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is highly conserved among eukaryotes. In yeast/mammals, it is composed of the phosphatidylinositol 3-phosphate 5-kinase Fab1p/PIKfyve, the PtdIns(3,5)P2 phosphatase Fig4p/Sac3 and the scaffolding subunit Vac14p/ArPIKfyve. The complex is located to vacuolar membranes in yeast and to endosomal membranes in mammals, where it controls the synthesis and turnover of PtdIns(3,5)P2. In this study, we analyzed the role and function of the Fab1p/PIKfyve-complex scaffold protein SmVAC14 in the filamentous ascomycete Sordaria macrospora (Sm). We generated the Smvac14 deletion strain ∆vac14 and performed phenotypic analysis of the mutant. Furthermore, we conducted fluorescence microscopic localization studies of fluorescently labeled SmVAC14 with vacuolar and late endosomal marker proteins. Our results revealed that SmVAC14 is important for maintaining vacuolar size and appearance as well as proper sexual development in S. macrospora. In addition, SmVAC14 plays an important role in starvation stress response. Accordingly, our results propose that the turnover of PtdIns(3,5)P2 is of great significance for developmental processes in filamentous fungi.


Assuntos
Fosfatos de Fosfatidilinositol , Saccharomyces cerevisiae , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Mamíferos , Proteínas de Membrana , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Desenvolvimento Sexual , Sordariales
2.
Appl Microbiol Biotechnol ; 104(9): 3691-3704, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32162092

RESUMO

Fruiting bodies are among the most complex multicellular structures formed by fungi, and the molecular mechanisms that regulate their development are far from understood. However, studies with a number of fungal model organisms have started to shed light on this developmental process. One of these model organisms is Sordaria macrospora, a filamentous ascomycete from the order Sordariales. This fungus has been a genetic model organism since the 1950s, but its career as a model organism for molecular genetics really took off in the 1990s, when the establishment of a transformation protocol, a mutant collection, and an indexed cosmid library provided the methods and resources to start revealing the molecular mechanisms of fruiting body development. In the 2000s, "omics" methods were added to the S. macrospora tool box, and by 2020, 58 developmental genes have been identified in this fungus. This review gives a brief overview of major method developments for S. macrospora, and then focuses on recent results characterizing different processes involved in regulating development including several regulatory protein complexes, autophagy, transcriptional and chromatin regulation, and RNA editing. KEY POINTS: •Sordaria macrospora is a model system for analyzing fungal fruiting body development. •More than 100 developmental mutants are available for S. macrospora. •More than 50 developmental genes have been characterized in S. macrospora.


Assuntos
Carpóforos/genética , Carpóforos/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Sordariales/genética , Autofagia/genética , Edição de RNA , Sordariales/fisiologia , Fatores de Transcrição/genética
3.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106611

RESUMO

A new ß-class carbonic anhydrase was cloned and purified from the filamentous ascomycete Sordaria macrospora, CAS3. This enzyme has a higher catalytic activity compared to the other two such enzymes from this fungus, CAS1 and CAS2, which were reported earlier, with the following kinetic parameters: kcat of (7.9 ± 0.2) × 105 s-1, and kcat/Km of (9.5 ± 0.12) × 107 M-1∙s-1. An inhibition study with a panel of sulfonamides and one sulfamate was also performed. The most effective CAS3 inhibitors were benzolamide, brinzolamide, dichlorophnamide, methazolamide, acetazolamide, ethoxzolamide, sulfanilamide, methanilamide, and benzene-1,3-disulfonamide, with KIs in the range of 54-95 nM. CAS3 generally shows a higher affinity for this class of inhibitors compared to CAS1 and CAS2. As S. macrospora is a model organism for the study of fruiting body development in fungi, these data may be useful for developing antifungal compounds based on CA inhibition.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Sordariales/enzimologia , Relação Estrutura-Atividade , Acetazolamida/química , Sequência de Aminoácidos/genética , Benzolamida/química , Inibidores da Anidrase Carbônica/classificação , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/isolamento & purificação , Etoxzolamida/química , Humanos , Cinética , Metazolamida/química , Sulfanilamida/química , Sulfonamidas/química , Tiazinas/química
4.
Mol Microbiol ; 110(4): 513-532, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30107058

RESUMO

The STRIPAK complex is involved in growth, cell fusion, development and signaling pathways, and thus malfunctions in the human STRIPAK complex often result in severe neuronal diseases and cancer. Despite the high degree of general conservation throughout the complex, several STRIPAK complex-associated small coiled-coil proteins of animals and yeasts are not conserved across species. As there are no data for filamentous ascomycetes, we addressed this through affinity purification with HA-tagged striatin ortholog PRO11 in Sordaria macrospora. Combining the method with liquid chromatography-mass spectrometry, we were able to co-purify STRIPAK complex interactor 1 (SCI1), the first STRIPAK-associated small coiled-coil protein in filamentous ascomycetes. Using yeast two-hybrid experiments, we identified SCI1 protein regions required for SCI1-PRO11 interaction, dimerization of SCI1 and interaction with other STRIPAK components. Further, both proteins PRO11 and SCI1 co-localize with the nuclear basket protein SmPOM152 at the nuclear envelope. Expression of the gene sci1 occurs during early developmental stages of S. macrospora, and the protein SCI1 in combination with PRO11 is required for cell fusion, vegetative growth and sexual development. The results of the present study will help to understand the underlying molecular mechanisms of STRIPAK signaling and function in cellular development and diseases in higher eukaryotes.


Assuntos
Carpóforos/citologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Hifas/metabolismo , Sordariales/crescimento & desenvolvimento , Fusão Celular , Proteínas Fúngicas/genética , Transdução de Sinais , Sordariales/genética , Sordariales/metabolismo
5.
Fungal Genet Biol ; 133: 103276, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550526

RESUMO

For many filamentous fungi with pathogenic lifestyles, the presence of distinct asexual conidia has been described. However, the role of these spore types remains mostly obscure. Colletotrichum graminicola is a hemibiotrophic filamentous fungus, causing anthracnose on maize plants with a high potential of epidemic disease spreading. C. graminicola generates two types of conidia. Falcate shaped conidia formed in necrotic lesions on maize tissues are able to generate appressoria with high efficiency and are considered key disease spreading propagules. The second conidia type, the smaller oval conidia, is formed in the vascular system of the infected plant, probably causing the distribution of the disease in planta. Barely any knowledge exists about how these conidia are able to exhibit their specific functions in the life cycle and pathogenicity of C. graminicola. Here, we show that germlings derived from both falcate and oval conidia differ in the secretion of a germination inhibitor and signals for germling fusion. Germination experiments combined with HPLC and mass spectrometry analyses revealed that germination of falcate conidia is regulated by the self-inhibitor mycosporine-glutamine, whereas this compound is absent from oval conidia cultures. Additionally, germlings derived from oval conidia undergo germling fusions at high frequencies and are able to induce such a fusion when co-incubated with falcate conidia. Falcate conidia germlings alone, however, were never observed to fuse. Plant infection experiments showed a positive correlation between germling fusions and efficient leaf infection by oval conidia. However, this correlation was not observed for infection by falcate conidia. Together, our findings reveal significant differences of two types of conidia derived from the same pathogenic fungus with distinct roles in pathogenesis.


Assuntos
Colletotrichum/patogenicidade , Esporos Fúngicos/fisiologia , Forma Celular , Colletotrichum/fisiologia , Esporos Fúngicos/citologia , Zea mays/microbiologia
6.
J Enzyme Inhib Med Chem ; 33(1): 390-396, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29363370

RESUMO

The two ß-carbonic anhydrases (CAs, EC 4.2.1.1) recently cloned and purified from the ascomycete fungus Sordaria macrospora, CAS1 and CAS2, were investigated for their inhibition with a panel of 39 aromatic, heterocyclic, and aliphatic sulfonamides and one sulfamate, many of which are clinically used agents. CAS1 was efficiently inhibited by tosylamide, 3-fluorosulfanilamide, and 3-chlorosulfanilamide (KIs in the range of 43.2-79.6 nM), whereas acetazolamide, methazolamide, topiramate, ethoxzolamide, dorzolamide, and brinzolamide were medium potency inhibitors (KIs in the range of 360-445 nM). CAS2 was less sensitive to sulfonamide inhibitors. The best CAS2 inhibitors were 5-amino-1,3,4-thiadiazole-2-sulfonamide (the deacetylated acetazolamide precursor) and 4-hydroxymethyl-benzenesulfonamide, with KIs in the range of 48.1-92.5 nM. Acetazolamide, dorzolamide, ethoxzolamide, topiramate, sulpiride, indisulam, celecoxib, and sulthiame were medium potency CAS2 inhibitors (KIs of 143-857 nM). Many other sulfonamides showed affinities in the high micromolar range or were ineffective as CAS1/2 inhibitors. Small changes in the structure of the inhibitor led to important differences of the activity. As these enzymes may show applications for the removal of anthropically generated polluting gases, finding modulators of their activity may be crucial for designing environmental-friendly CO2 capture processes.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Hifas/enzimologia , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
7.
Mol Microbiol ; 97(4): 676-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25989468

RESUMO

The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility.


Assuntos
Ascomicetos/genética , Glicosilfosfatidilinositóis/genética , Monoéster Fosfórico Hidrolases/metabolismo , Sordariales/genética , Sequência de Aminoácidos , Ascomicetos/metabolismo , Carpóforos/genética , Carpóforos/metabolismo , Deleção de Genes , Glicosilfosfatidilinositóis/metabolismo , Hifas/metabolismo , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Proteína Fosfatase 2/metabolismo , Sordariales/enzimologia , Sordariales/metabolismo
8.
PLoS Genet ; 9(9): e1003820, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068976

RESUMO

Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator.


Assuntos
Ascomicetos/genética , Evolução Molecular , Análise de Sequência de DNA , Sordariales/genética , Transcriptoma/genética , Carpóforos/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Genoma Fúngico , Splicing de RNA/genética , Deleção de Sequência/genética
9.
Proc Natl Acad Sci U S A ; 110(4): 1476-81, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23307807

RESUMO

Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.


Assuntos
Penicilinas/biossíntese , Penicillium chrysogenum/fisiologia , Sequência de Bases , Biotecnologia , Cruzamentos Genéticos , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Deleção de Genes , Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Penicillium chrysogenum/genética , Penicillium chrysogenum/crescimento & desenvolvimento , Fenótipo , Feromônios/genética , Feromônios/fisiologia , Receptores de Feromônios/genética , Receptores de Feromônios/fisiologia , Recombinação Genética , Reprodução/genética , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia
10.
Mycologia ; 108(3): 581-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908649

RESUMO

The fungal vacuole is an organelle, which adopts pleiotropic morphologies and functions. In aging and starving hyphae it is the compartment of degradation and recycling of cellular constituents. Here we identified TSP3, one of three tetraspanins present in the filamentous ascomycete fungus Neurospora crassa, as a vacuolar membrane protein. The protein is detected only in aging and starving cultures and under other conditions, which induce autophagy, such as vegetative incompatibility or the presence of the macrolide antibiotic rapamycin. Mutant analysis revealed that TSP3 is dispensable for growth and development of the fungus under laboratory conditions. Together these findings indicate that tsp3 shares characteristics with idi (induced during incompatibility) genes and might promote vacuolar functions related to autophagy.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Neurospora crassa/metabolismo , Tetraspaninas/metabolismo , Vacúolos/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Tetraspaninas/genética , Vacúolos/genética
11.
Mol Microbiol ; 92(5): 931-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24720701

RESUMO

The rapid interconversion of carbon dioxide and bicarbonate (hydrogen carbonate) is catalysed by metalloenzymes termed carbonic anhydrases (CAs). CAs have been identified in all three domains of life and can be divided into five evolutionarily unrelated classes (α, ß, γ, δ and ζ) that do not share significant sequence similarities. The function of the mammalian, prokaryotic and plant α-CAs has been intensively studied but the function of CAs in filamentous ascomycetes is mostly unknown. The filamentous ascomycete Sordaria macrospora codes for four CAs, three of the ß-class and one of the α-class. Here, we present a functional analysis of CAS4, the S. macrospora α-class CA. The CAS4 protein was post-translationally glycosylated and secreted. The knockout strain Δcas4 had a significantly reduced rate of ascospore germination. To determine the cas genes required for S. macrospora growth under ambient air conditions, we constructed double and triple mutations of the four cas genes in all possible combinations and a quadruple mutant. Vegetative growth rate of the quadruple mutant lacking all cas genes was drastically reduced compared to the wild type and invaded the agar under normal air conditions. Likewise the fruiting bodies were embedded in the agar and completely devoid of mature ascospores.


Assuntos
Anidrases Carbônicas/metabolismo , Sordariales/enzimologia , Sordariales/metabolismo , Esporos Fúngicos/enzimologia , Esporos Fúngicos/metabolismo , Anidrases Carbônicas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Sordariales/genética , Esporos Fúngicos/genética
12.
Appl Microbiol Biotechnol ; 98(20): 8433-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25109265

RESUMO

Carbonic anhydrases (CAs) are metalloenzymes that catalyze the interconversion of carbon dioxide (CO2) and hydrogen carbonate. CAs are distributed over all the three domains of life and are divided into five distinct evolutionarily unrelated gene families (α, ß, γ, δ, ζ). In the large fungal kingdom, the majority of fungi encode multiple copies of ß-CAs, with some also possessing genes for α-class CAs. Hemiascomycetous and basidiomycetous yeasts encode one or two ß-CAs, while most of the filamentous ascomycetes have multiple copies of genes encoding α- and ß-CAs. The functions of fungal ß-CAs have been investigated intensively, while the role of fungal α-CAs is mostly unknown. The ß-CAs are involved in sexual development, CO2-sensing, pathogenicity, and survival in ambient air. Only recently, researchers have begun to use functional and structural data of CAs from pathogenic and non-pathogenic organisms to develop powerful and effective drugs and inhibitors or to identify enzymes that can be utilized in industrial applications. Despite the large number of fungal CAs known, only five have been characterized structurally: the α-CA AoCA of Aspergillus oryzae, the full length ß-CA Can2 from the pathogenic basidiomycete Cryptococcus neoformans, the N-terminally truncated Saccharomyces cerevisiae ß-CA Nce103, and two ß-CAs of Sordaria macrospora. This review focuses on the functional and structural properties of fungal CAs.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Fungos/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
13.
Mol Microbiol ; 84(2): 310-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22375702

RESUMO

Sexual development in fungi is a complex process involving the generation of new cell types and tissues - an essential step for all eukaryotic life. The characterization of sterile mutants in the ascomycete Sordaria macrospora has led to a number of proteins involved in sexual development, but a link between these proteins is still missing. Using a combined tandem-affinity purification/mass spectrometry approach, we showed in vivo association of developmental protein PRO22 with PRO11, homologue of mammalian striatin, and SmPP2AA, scaffolding subunit of protein phosphatase 2A. Further experiments extended the protein network to the putative kinase activator SmMOB3, known to be involved in sexual development. Extensive yeast two-hybrid studies allowed us to pinpoint functional domains involved in protein-protein interaction. We show for the first time that a number of already known factors together with new components associate in vivo to form a highly conserved multi-subunit complex. Strikingly, a similar complex has been described in humans, but the function of this so-called striatin interacting phosphatase and kinase (STRIPAK) complex is largely unknown. In S. macrospora, truncation of PRO11 and PRO22 leads to distinct defects in sexual development and cell fusion, indicating a role for the fungal STRIPAK complex in both processes.


Assuntos
Proteínas Fúngicas/metabolismo , Multimerização Proteica , Sordariales/crescimento & desenvolvimento , Cromatografia de Afinidade , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Espectrometria de Massas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
14.
Fungal Genet Biol ; 61: 50-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24095659

RESUMO

Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carpóforos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Sordariales/crescimento & desenvolvimento , Sordariales/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Deleção de Genes , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real
15.
Appl Microbiol Biotechnol ; 97(21): 9277-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077722

RESUMO

Autophagy is a tightly controlled degradation process in which eukaryotic cells digest their own cytoplasm containing protein complexes and organelles in the vacuole or lysosome. Two types of autophagy have been described: macroautophagy and microautophagy. Both types can be further divided into nonselective and selective processes. Molecular analysis of autophagy over the last two decades has mostly used the unicellular ascomycetes Saccharomyces cerevisiae and Pichia pastoris. Genetic analysis in these yeasts has identified 36 autophagy-related (atg) genes; many are conserved in all eukaryotes, including filamentous ascomycetes. However, the autophagic machinery also evolved significant differences in fungi, as a consequence of adaptation to diverse fungal lifestyles. Intensive studies on autophagy in the last few years have shown that autophagy in filamentous fungi is not only involved in nutrient homeostasis but in other cellular processes such as cell differentiation, pathogenicity and secondary metabolite production. This mini-review focuses on the specific roles of autophagy in filamentous fungi.


Assuntos
Ascomicetos/fisiologia , Autofagia , Fungos/fisiologia , Ascomicetos/genética , Sequência Conservada , Fungos/genética , Genes Fúngicos
16.
PLoS Genet ; 6(4): e1000891, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20386741

RESUMO

Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.


Assuntos
Genoma Fúngico , Sordariales/genética , Sequência de Bases , Perfilação da Expressão Gênica , Genoma , Genômica/métodos , Modelos Biológicos , Dados de Sequência Molecular , Neurospora crassa/genética , Filogenia , Análise de Sequência de DNA
17.
Sci Rep ; 12(1): 17727, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272986

RESUMO

Proximity-dependent biotin identification (BioID) has emerged as a powerful methodology to identify proteins co-localizing with a given bait protein in vivo. The approach has been established in animal cells, plants and yeast but not yet in filamentous fungi. BioID relies on promiscuous biotin ligases fused to bait proteins to covalently label neighboring proteins with biotin. Biotinylated proteins are specifically enriched through biotin affinity capture from denatured cell lysates and subsequently identified and quantified with liquid chromatography-mass spectrometry (LC-MS). In contrast to many other affinity capture approaches for studying protein-protein interactions, BioID does not rely on physical protein-protein binding within native cell lysates. This feature allows the identification of protein proximities of weak or transient and dynamic nature. Here, we demonstrate the application of BioID for the fungal model organism Sordaria macrospora (Sm) using the example of the STRIPAK complex interactor 1 (SCI1) of the well-characterized striatin-interacting phosphatase and kinase (SmSTRIPAK) complex as proof of concept. For the establishment of BioID in S. macrospora, a codon-optimized TurboID biotin ligase was fused to SCI1. Biotin capture of the known SmSTRIPAK components PRO11, SmMOB3, PRO22 and SmPP2Ac1 demonstrates the successful BioID application in S. macrospora. BioID proximity labeling approaches will provide a powerful proteomics tool for fungal biologists.


Assuntos
Biotina , Fungos , Animais , Monoéster Fosfórico Hidrolases , Ligases , Biotinilação
18.
Curr Genet ; 57(2): 133-49, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21229248

RESUMO

Members of the striatin family and their highly conserved interacting protein phocein/Mob3 are key components in the regulation of cell differentiation in multicellular eukaryotes. The striatin homologue PRO11 of the filamentous ascomycete Sordaria macrospora has a crucial role in fruiting body development. Here, we functionally characterized the phocein/Mob3 orthologue SmMOB3 of S. macrospora. We isolated the gene and showed that both, pro11 and Smmob3 are expressed during early and late developmental stages. Deletion of Smmob3 resulted in a sexually sterile strain, similar to the previously characterized pro11 mutant. Fusion assays revealed that ∆Smmob3 was unable to undergo self-fusion and fusion with the pro11 strain. The essential function of the SmMOB3 N-terminus containing the conserved mob domain was demonstrated by complementation analysis of the sterile S. macrospora ∆Smmob3 strain. Downregulation of either pro11 in ∆Smmob3, or Smmob3 in pro11 mutants by means of RNA interference (RNAi) resulted in synthetic sexual defects, demonstrating for the first time the importance of a putative PRO11/SmMOB3 complex in fruiting body development.


Assuntos
Carpóforos/genética , Proteínas de Membrana/genética , Sordariales/genética , Sequência de Aminoácidos , Fusão Celular , Carpóforos/citologia , Carpóforos/crescimento & desenvolvimento , Proteínas de Membrana/química , Dados de Sequência Molecular , Interferência de RNA , Alinhamento de Sequência , Sordariales/química , Sordariales/citologia , Sordariales/crescimento & desenvolvimento
19.
J Fungi (Basel) ; 7(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34575720

RESUMO

In the filamentous fungus Sordaria macrospora (Sm), the STRIPAK complex is required for vegetative growth, fruiting-body development and hyphal fusion. The SmSTRIPAK core consists of the striatin homolog PRO11, the scaffolding subunit of phosphatase PP2A, SmPP2AA, and its catalytic subunit SmPP2Ac1. Among other STRIPAK proteins, the recently identified coiled-coil protein SCI1 was demonstrated to co-localize around the nucleus. Pulldown experiments with SCI identified the transmembrane nucleoporin (TM Nup) SmPOM33 as a potential nuclear-anchor of SmSTRIPAK. Localization studies revealed that SmPOM33 partially localizes to the nuclear envelope (NE), but mainly to the endoplasmic reticulum (ER). We succeeded to generate a Δpom33 deletion mutant by homologous recombination in a new S. macrospora Δku80 recipient strain, which is defective in non-homologous end joining. Deletion of Smpom33 did neither impair vegetative growth nor sexual development. In pulldown experiments of SmPOM33 followed by LC/MS analysis, ER-membrane proteins involved in ER morphology, protein translocation, glycosylation, sterol biosynthesis and Ca2+-transport were significantly enriched. Data are available via ProteomeXchange with identifier PXD026253. Although no SmSTRIPAK components were identified as putative interaction partners, it cannot be excluded that SmPOM33 is involved in temporarily anchoring the SmSTRIPAK to the NE or other sites in the cell.

20.
J Fungi (Basel) ; 7(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530609

RESUMO

Microbodies, including peroxisomes, glyoxysomes and Woronin bodies, are ubiquitous dynamic organelles that play important roles in fungal development. The ATP-dependent chaperone and protease family Lon that maintain protein quality control within the organelle significantly regulate the functionality of microbodies. The filamentous ascomycete Sordaria macrospora is a model organism for studying fruiting-body development. The genome of S. macrospora encodes one Lon protease with the C-terminal peroxisomal targeting signal (PTS1) serine-arginine-leucine (SRL) for import into microbodies. Here, we investigated the function of the protease SmLON2 in sexual development and during growth under stress conditions. Localization studies revealed a predominant localization of SmLON2 in glyoxysomes. This localization depends on PTS1, since a variant without the C-terminal SRL motif was localized in the cytoplasm. A ΔSmlon2 mutant displayed a massive production of aerial hyphae, and produced a reduced number of fruiting bodies and ascospores. In addition, the growth of the ΔSmlon2 mutant was completely blocked under mild oxidative stress conditions. Most of the defects could be complemented with both variants of SmLON2, with and without PTS1, suggesting a dual function of SmLON2, not only in microbody, but also in cytosolic protein quality control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA