Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Inorg Chem ; 59(5): 3249-3259, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32057236

RESUMO

Iron centers featuring thiolates in their metal coordination sphere (as ligands or substrates) are well-known to activate dioxygen. Both heme and non-heme centers that contain iron-thiolate bonds are found in nature. Investigating the ability of iron-thiolate model complexes to activate O2 is expected to improve the understanding of the key factors that direct reactivity to either iron or sulfur. We report here the structural and redox properties of a thiolate-based dinuclear Fe complex, [FeII2(LS)2] (LS2- = 2,2'-(2,2'-bipyridine-6,6'-iyl)bis(1,1-diphenylethanethiolate)), and its reactivity with dioxygen, in comparison with its previously reported protonated counterpart, [FeII2(LS)(LSH)]+. When reaction with O2 occurs in the absence of protons or in the presence of 1 equiv of proton (i.e., from [FeII2(LS)(LSH)]+), unsupported µ-oxo or µ-hydroxo FeIII dinuclear complexes ([FeIII2(LS)2O] and [FeIII2(LS)2(OH)]+, respectively) are generated. [FeIII2(LS)2O], reported previously but isolated here for the first time from O2 activation, is characterized by single crystal X-ray diffraction and Mössbauer, resonance Raman, and NMR spectroscopies. The addition of protons leads to the release of water and the generation of a mixture of two Fe-based "oxygen-free" species. Density functional theory calculations provide insight into the formation of the µ-oxo or µ-hydroxo FeIII dimers, suggesting that a dinuclear µ-peroxo FeIII intermediate is key to reactivity, and the structure of which changes as a function of protonation state. Compared to previously reported Mn-thiolate analogues, the evolution of the peroxo intermediates to the final products is different and involves a comproportionation vs a dismutation process for the Mn and Fe derivate, respectively.

2.
J Am Chem Soc ; 139(25): 8718-8724, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28581745

RESUMO

A reactive high-valent dinuclear nickel(IV) oxido bridged complex is reported that can be formed at room temperature by reaction of [(L)2Ni(II)2(µ-X)3]X (X = Cl or Br) with NaOCl in methanol or acetonitrile (where L = 1,4,7-trimethyl-1,4,7-triazacyclononane). The unusual Ni(IV) oxido species is stabilized within a dinuclear tris-µ-oxido-bridged structure as [(L)2Ni(IV)2(µ-O)3]2+. Its structure and its reactivity with organic substrates are demonstrated through a combination of UV-vis absorption, resonance Raman, 1H NMR, EPR, and X-ray absorption (near-edge) spectroscopy, ESI mass spectrometry, and DFT methods. The identification of a Ni(IV)-O species opens opportunities to control the reactivity of NaOCl for selective oxidations.

4.
J Am Chem Soc ; 138(39): 12987-12996, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598293

RESUMO

Terminal high-valent metal-oxygen species are key reaction intermediates in the catalytic cycle of both enzymes (e.g., oxygenases) and synthetic oxidation catalysts. While tremendous efforts have been directed toward the characterization of the biologically relevant terminal manganese-oxygen and iron-oxygen species, the corresponding analogues based on late-transition metals such as cobalt, nickel or copper are relatively scarce. This scarcity is in part related to the "Oxo Wall" concept, which predicts that late transition metals cannot support a terminal oxido ligand in a tetragonal environment. Here, the nickel(II) complex (1) of the tetradentate macrocyclic ligand bearing a 2,6-pyridinedicarboxamidate unit is shown to be an effective catalyst in the chlorination and oxidation of C-H bonds with sodium hypochlorite as terminal oxidant in the presence of acetic acid (AcOH). Insight into the active species responsible for the observed reactivity was gained through the study of the reaction of 1 with ClO- at low temperature by UV-vis absorption, resonance Raman, EPR, ESI-MS, and XAS analyses. DFT calculations aided the assignment of the trapped chromophoric species (3) as a nickel-hypochlorite species. Despite the fact that the formal oxidation state of the nickel in 3 is +4, experimental and computational analysis indicate that 3 is best formulated as a NiIII complex with one unpaired electron delocalized in the ligands surrounding the metal center. Most remarkably, 3 reacts rapidly with a range of substrates including those with strong aliphatic C-H bonds, indicating the direct involvement of 3 in the oxidation/chlorination reactions observed in the 1/ClO-/AcOH catalytic system.

5.
Inorg Chem ; 55(9): 4211-22, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27074109

RESUMO

The formation of an Fe(III)-OOH species by reaction of complex 1 ([(MeN3Py)Fe(II)(CH3CN)2](2+)) with H2O2 at room temperature is reported and is studied by a combination of UV/vis absorption, EPR, and resonance Raman spectroscopies. The formation of the Fe(III)-OOH species, and its subsequent conversion to relatively inert Fe(III)-O-Fe(III) species, is shown to be highly dependent on the concentration of water, with excess water favoring the formation of the latter species, which is studied by UV/vis absorption spectroelectrochemistry also. The presence of acetic acid increases the rate and extent of oxidation of 1 to its iron(III) state and inhibits the wasteful decomposition of H2O2 but does not affect significantly the spectroscopic properties of the Fe(III)-OOH species formed.


Assuntos
Complexos de Coordenação/química , Peróxido de Hidrogênio/química , Compostos de Ferro/química , Água/química , Ácido Acético/química , Acetonitrilas/química , Alcenos/química , Técnicas Eletroquímicas , Cinética , Ligantes , Oxirredução , Temperatura
6.
Angew Chem Int Ed Engl ; 55(2): 545-9, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26633246

RESUMO

A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit.

7.
Angew Chem Int Ed Engl ; 54(14): 4357-61, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25663379

RESUMO

Fe(III)-hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe(III)-hypohalite intermediates of possible relevance to iron halogenases. We show that Fe(III)-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe(III)-OCl, and ultimately Fe(IV)=O, species and provide indirect evidence for a short-lived Fe(II)-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.


Assuntos
Compostos Férricos/química , Ácido Hipocloroso/química , Análise Espectral/métodos
8.
ACS Omega ; 8(12): 10796-10805, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008109

RESUMO

Carbon surfaces (glassy carbon, graphite, and boron-doped diamond) were functionalized with layers composed of linked pyridinium and pyridine moieties using simple electrochemical reduction of trifluoroacetylpyridinium. The pyridinium species was generated in situ in solution by the reaction of trifluoroacetic anhydride and pyridine precursors and underwent electrochemical reduction at -1.97 V vs Fc/Fc+, as determined by cyclic voltammetry. The pyridine/pyridinium films were electrodeposited at room temperature, on a timescale of minutes, and were characterized using X-ray photoelectron spectroscopy. The as-prepared films have a net positive charge in aqueous solution at pH 9 and below due to the pyridinium content, confirmed by the electrochemical response of differently charged redox molecules at the functionalized surfaces. The positive charge can be enhanced further through protonation of the neutral pyridine component by controlling the solution pH. Moreover, the nitrogen-acetyl bond can be cleaved through base treatment to purposefully increase the neutral pyridine proportion of the film. This results in a surface that can be "switched" from functionally near neutral to a positive charge by treatment in basic and acidic solutions, respectively, through manipulation of the protonation state of the pyridine. The functionalization process demonstrated here is readily achievable at a fast timescale at room temperature and hence can allow for rapid screening of surface properties. Such functionalized surfaces present a means to test in isolation the specific catalytic performance of pyridinic groups toward key processes such as oxygen and CO2 reduction.

9.
ACS Sens ; 8(4): 1667-1675, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37043367

RESUMO

We present an alternative to conventional Electron Paramagnetic Resonance (EPR) spectroscopy equipment. Avoiding the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected their cross-relaxation with a compound of interest. In addition, the EPR spectra are encoded through a localized magnetic field gradient. While recording previous data took 12 min per data point with individual NV centers, we were able to reconstruct a full spectrum at once in 3 s, over a range from 3 to 11 G. In terms of sensitivity, only 0.5 µL of a 1 µM hexaaquacopper(II) ion solution was necessary.


Assuntos
Diamante , Imãs , Diamante/química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Campos Magnéticos
10.
ACS Catal ; 8(10): 9665-9674, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30319886

RESUMO

The oxidation of the C-H and C=C bonds of hydrocarbons with H2O2 catalyzed by non-heme iron complexes with pentadentate ligands is widely accepted as involving a reactive FeIV=O species such as [(N4Py)FeIV=O]2+ formed by homolytic cleavage of the O-O bond of an FeIII-OOH intermediate (where N4Py is 1,1-bis(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine). We show here that at low H2O2 concentrations the FeIV=O species formed is detectable in methanol. Furthermore, we show that the decomposition of H2O2 to water and O2 is an important competing pathway that limits efficiency in the terminal oxidant and indeed dominates reactivity except where only sub-/near-stoichiometric amounts of H2O2 are present. Although independently prepared [(N4Py)FeIV=O]2+ oxidizes stoichiometric H2O2 rapidly, the rate of formation of FeIV=O from the FeIII-OOH intermediate is too low to account for the rate of H2O2 decomposition observed under catalytic conditions. Indeed, with excess H2O2, disproportionation to O2 and H2O is due to reaction with the FeIII-OOH intermediate and thereby prevents formation of the FeIV=O species. These data rationalize that the activity of these catalysts with respect to hydrocarbon/alkene oxidation is maximized by maintaining sub-/near-stoichiometric steady-state concentrations of H2O2, which ensure that the rate of the H2O2 oxidation by the FeIII-OOH intermediate is less than the rate of the O-O bond homolysis and the subsequent reaction of the FeIV=O species with a substrate.

11.
Chem Commun (Camb) ; 53(86): 11782-11785, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29034924

RESUMO

The formation and spectroscopic characterization of a superoxido cobalt(iii) and a peroxido dicobalt(iii) species formed in the temperature dependent reversible reaction of a cobalt(ii) precursor with O2 is described. The electronic nature of each species is explored in their reactivity with organic substrates.

12.
Angew Chem Weinheim Bergstr Ger ; 127(14): 4431-4435, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-27478260

RESUMO

FeIII-hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII-hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA