Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 311(1): e232741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625006

RESUMO

Background Procedural details of mechanical thrombectomy in patients with ischemic stroke are important predictors of clinical outcome and are collected for prospective studies or national stroke registries. To date, these data are collected manually by human readers, a labor-intensive task that is prone to errors. Purpose To evaluate the use of the large language models (LLMs) GPT-4 and GPT-3.5 to extract data from neuroradiology reports on mechanical thrombectomy in patients with ischemic stroke. Materials and Methods This retrospective study included consecutive reports from patients with ischemic stroke who underwent mechanical thrombectomy between November 2022 and September 2023 at institution 1 and between September 2016 and December 2019 at institution 2. A set of 20 reports was used to optimize the prompt, and the ability of the LLMs to extract procedural data from the reports was compared using the McNemar test. Data manually extracted by an interventional neuroradiologist served as the reference standard. Results A total of 100 internal reports from 100 patients (mean age, 74.7 years ± 13.2 [SD]; 53 female) and 30 external reports from 30 patients (mean age, 72.7 years ± 13.5; 18 male) were included. All reports were successfully processed by GPT-4 and GPT-3.5. Of 2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8]; range per category, 61%-100%) data points were correctly extracted by GPT-4 without the need for further postprocessing. With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%-99%; P < .001). For the external reports, GPT-4 extracted 760 of 840 (90.5% [95% CI: 88.3, 92.4]) correct data entries, while GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4]; P < .001). Conclusion Compared with GPT-3.5, GPT-4 more frequently extracted correct procedural data from free-text reports on mechanical thrombectomy performed in patients with ischemic stroke. © RSNA, 2024 Supplemental material is available for this article.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Idoso , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia
2.
NMR Biomed ; 37(6): e5113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38316107

RESUMO

31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and ß-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.


Assuntos
Algoritmos , Magnésio , Magnésio/análise , Magnésio/química , Concentração de Íons de Hidrogênio , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Fósforo/química , Isótopos de Fósforo
3.
Neuroradiology ; 66(7): 1153-1160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619571

RESUMO

PURPOSE: To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS: One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS: The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION: In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.


Assuntos
Aneurisma Intracraniano , Angiografia por Ressonância Magnética , Sensibilidade e Especificidade , Software , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Competência Clínica , Interpretação de Imagem Assistida por Computador/métodos , Inteligência Artificial , Idoso , Adulto
4.
Neuroradiology ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844697

RESUMO

PURPOSE: Double-layer design carotid stents have been cast in a negative light since several investigations reported high rates of in-stent occlusions, at least in the acute setting of tandem occlusions. CGuard is a new generation double-layered stent that was designed to prevent periinterventional embolic events. The aim of this study was to analyze the safety and efficacy of the CGuard in emergent CAS and for the acute treatment of tandem occlusions in comparison with the single-layer Carotid Wallstent (CWS) system. METHODS: All patients who underwent CAS with CGuard or CWS after intracranial mechanical thrombectomy (MT) between 11/2018 and 12/2022 were identified from our local thrombectomy registry. Clinical, interventional and neuroimaging data were analyzed. Patency of the stent was assessed within 72 h. Intracranial hemorrhage and modified Rankin score (mRS) at discharge were the main endpoints. RESULTS: In total, 86 stent procedures in 86 patients were included (CWS: 44, CGuard: 42). CGuard had a lower, but not statistically significant rate (p = 0.431) of in-stent occlusions (n = 2, 4.8%) when compared to the CWS (n = 4, 9.1%). Significant in-stent stenosis was found in one case in each group. There was no statistically significant difference in functional outcome at discharge between the two groups with a median mRS for CGuard of 2 (IQR:1-5) vs. CWS 3 (IQR:2-4). CONCLUSION: In our series, the rate of in-stent occlusions after emergent CAS was lower with the dual-layer CGuard when compared to the monolayer CWS. Further data are needed to evaluate the potential benefit of the design in more detail.

5.
MAGMA ; 37(1): 27-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37737942

RESUMO

OBJECTIVE: First implementation of dynamic oxygen-17 (17O) MRI at 7 Tesla (T) during neuronal stimulation in the human brain. METHODS: Five healthy volunteers underwent a three-phase 17O gas (17O2) inhalation experiment. Combined right-side visual stimulus and right-hand finger tapping were used to achieve neuronal stimulation in the left cerebral hemisphere. Data analysis included the evaluation of the relative partial volume (PV)-corrected time evolution of absolute 17O water (H217O) concentration and of the relative signal evolution without PV correction. Statistical analysis was performed using a one-tailed paired t test. Blood oxygen level-dependent (BOLD) experiments were performed to validate the stimulation paradigm. RESULTS: The BOLD maps showed significant activity in the stimulated left visual and sensorimotor cortex compared to the non-stimulated right side. PV correction of 17O MR data resulted in high signal fluctuations with a noise level of 10% due to small regions of interest (ROI), impeding further quantitative analysis. Statistical evaluation of the relative H217O signal with PV correction (p = 0.168) and without (p = 0.382) did not show significant difference between the stimulated left and non-stimulated right sensorimotor ROI. DISCUSSION: The change of cerebral oxygen metabolism induced by sensorimotor and visual stimulation is not large enough to be reliably detected with the current setup and methodology of dynamic 17O MRI at 7 T.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Isótopos de Oxigênio , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Oxigênio
6.
Hum Brain Mapp ; 44(12): 4467-4479, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37347650

RESUMO

Hippocampal volumetry is an essential tool in researching and diagnosing mesial temporal lobe epilepsy (mTLE). However, it has a limited ability to detect subtle alterations in hippocampal morphometry. Here, we establish and apply a novel geometry-based tool that enables point-wise morphometric analysis based on an intrinsic coordinate system of the hippocampus. We hypothesized that this point-wise analysis uncovers structural alterations not measurable by volumetry, but associated with histological underpinnings and the neuropsychological profile of mTLE. We conducted a retrospective study in 204 individuals with mTLE and 57 age- and gender-matched healthy subjects. FreeSurfer-based segmentations of hippocampal subfields in 3T-MRI were subjected to a geometry-based analysis that resulted in a coordinate system of the hippocampal mid-surface and allowed for point-wise measurements of hippocampal thickness and other features. Using point-wise analysis, we found significantly lower thickness and higher FLAIR signal intensity in the entire affected hippocampus of individuals with hippocampal sclerosis (HS-mTLE). In the contralateral hippocampus of HS-mTLE and the affected hippocampus of MRI-negative mTLE, we observed significantly lower thickness in the presubiculum. Impaired verbal memory was associated with lower thickness in the left presubiculum. In HS-mTLE histological subtype 3, we observed higher curvature than in subtypes 1 and 2 (all p < .05). These findings could not be observed using conventional volumetry (Bonferroni-corrected p < .05). We show that point-wise measures of hippocampal morphometry can uncover structural alterations not measurable by volumetry while also reflecting histological underpinnings and verbal memory. This substantiates the prospect of their clinical application.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/complicações , Estudos Retrospectivos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal/patologia , Memória , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/patologia , Esclerose/patologia
7.
Magn Reson Med ; 90(4): 1569-1581, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317562

RESUMO

PURPOSE: The purpose of this study was to compare the potential of asymmetry-based (APTwasym ), Lorentzian-fit-based (PeakAreaAPT and MTconst ), and relaxation-compensated (MTRRex APT and MTRRex MT) CEST contrasts of the amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) for early response assessment and prediction of progression-free survival (PFS) in patients with glioma. METHODS: Seventy-two study participants underwent CEST-MRI at 3T from July 2018 to December 2021 in a prospective clinical trial four to 6 wk after the completion of radiotherapy for diffuse glioma. Tumor segmentations were performed on T2w -FLAIR and contrast-enhanced T1w images. Therapy response assessment and determination of PFS were performed according to response assessment in neuro oncology (RANO) criteria using clinical follow-up data with a median observation time of 9.2 mo (range, 1.6-40.8) and compared to CEST MRI metrics. Statistical testing included receiver operating characteristic analyses, Mann-Whitney-U-test, Kaplan-Meier analyses, and logrank-test. RESULTS: MTconst (AUC = 0.79, p < 0.01) showed a stronger association with RANO response assessment compared to PeakAreaAPT (AUC = 0.71, p = 0.02) and MTRRex MT (AUC = 0.71, p = 0.02), and enabled differentiation of participants with pseudoprogression (n = 8) from those with true progression (AUC = 0.79, p = 0.02). Furthermore, MTconst (HR = 3.04, p = 0.01), PeakAreaAPT (HR = 0.39, p = 0.03), and APTwasym (HR = 2.63, p = 0.02) were associated with PFS. MTRRex APT was not associated with any outcome. CONCLUSION: MTconst , PeakAreaAPT, and APTwasym imaging predict clinical outcome by means of progression-free survival. Furthermore, MTconst enables differentiation of radiation-induced pseudoprogression from disease progression. Therefore, the assessed metrics may have synergistic potential for supporting clinical decision making during follow-up of patients with glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/radioterapia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Prótons , Curva ROC
8.
NMR Biomed ; 36(6): e4731, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297117

RESUMO

Chemical exchange saturation transfer (CEST) imaging is an important molecular magnetic resonance imaging technique that can image numerous low-concentration biomolecules with water-exchangeable protons (such as cellular proteins) and tissue pH. CEST, or more specially amide proton transfer-weighted imaging, has been widely used for the detection, diagnosis, and response assessment of brain tumors, and its feasibility in identifying molecular markers in gliomas has also been explored in recent years. In this paper, after briefing on the basic principles and quantification methods of CEST imaging, we review its early applications in identifying isocitrate dehydrogenase mutation status, MGMT methylation status, 1p/19q deletion status, and H3K27M mutation status in gliomas. Finally, we discuss the limitations or weaknesses in these studies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Marcadores Genéticos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/química , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/química , Prótons , Isocitrato Desidrogenase/genética
9.
J Neurooncol ; 161(3): 539-545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36695975

RESUMO

PURPOSE: Patients with brain metastasis (BM) from solid tumors are in an advanced stage of cancer. BM may occur during a known oncological disease (metachronous BM) or be the primary manifestation of previously unknown cancer (synchronous BM). The time of diagnosis might decisively impact patient prognosis and further treatment stratification. In the present study, we analyzed the prognostic impact of synchronous versus (vs.) metachronous BM occurrence following resection of BM. METHODS: Between 2013 and 2018, 353 patients had undergone surgical therapy for BM at the authors' neuro-oncological center. Survival stratification calculated from the day of neurosurgical resection was performed for synchronous vs. metachronous BM diagnosis. RESULTS: Non-small-cell lung carcinoma (NSCLC) was the most common tumor entity of primary site (43%) followed by gastrointestinal cancer (14%) and breast cancer (13%). Synchronous BM occurrence was present in 116 of 353 patients (33%), metachronous BM occurrence was present in 237 of 353 patients (67%). NSCLC was significantly more often diagnosed via resection of the BM (56% synchronous vs. 44% metachronous situation, p = 0.0001). The median overall survival for patients with synchronous BM diagnosis was 12 months (95% confidence interval (CI) 7.5-16.5) compared to 13 months (95% CI 9.6-16.4) for patients with metachronous BM diagnosis (p = 0.97). CONCLUSIONS: The present study indicates that time of BM diagnosis (synchronous vs. metachronous) does not significantly impact patient survival following surgical therapy of BM. These results suggest that the indication for neurosurgical BM resection should be made regardless of a synchronous or a metachronous time of BM occurrence.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Primárias Múltiplas , Segunda Neoplasia Primária , Humanos , Feminino , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Neoplasias Encefálicas/cirurgia , Segunda Neoplasia Primária/cirurgia , Estudos Retrospectivos , Prognóstico , Neoplasias Primárias Múltiplas/cirurgia
10.
J Neurooncol ; 164(3): 607-616, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37728779

RESUMO

PURPOSE: In the randomized CeTeG/NOA-09 trial, lomustine/temozolomide (CCNU/TMZ) was superior to TMZ therapy regarding overall survival (OS) in MGMT promotor-methylated glioblastoma. Progression-free survival (PFS) and pseudoprogression rates (about 10%) were similar in both arms. Further evaluating this discrepancy, we analyzed patterns of postprogression survival (PPS) and MRI features at first progression according to modified RANO criteria (mRANO). METHODS: We classified the patients of the CeTeG/NOA-09 trial according to long vs. short PPS employing a cut-off of 18 months and compared baseline characteristics and survival times. In patients with available MRIs and confirmed progression, the increase in T1-enhancing, FLAIR hyperintense lesion volume and the change in ADC mean value of contrast-enhancing tumor upon progression were determined. RESULTS: Patients with long PPS in the CCNU/TMZ arm had a particularly short PFS (5.6 months). PFS in this subgroup was shorter than in the long PPS subgroup of the TMZ arm (11.1 months, p = 0.01). At mRANO-defined progression, patients of the CCNU/TMZ long PPS subgroup had a significantly higher increase of mean ADC values (p = 0.015) and a tendency to a stronger volumetric increase in T1-enhancement (p = 0.22) as compared to long PPS patients of the TMZ arm. CONCLUSION: The combination of survival and MRI analyses identified a subgroup of CCNU/TMZ-treated patients with features that sets them apart from other patients in the trial: short first PFS despite long PPS and significant increase in mean ADC values upon mRANO-defined progression. The observed pattern is compatible with the features commonly observed in pseudoprogression suggesting mRANO-undetected pseudoprogressions in the CCNU/TMZ arm of CeTeG/NOA-09.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Dacarbazina/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Temozolomida/uso terapêutico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Lomustina/uso terapêutico , Imageamento por Ressonância Magnética , Antineoplásicos Alquilantes/uso terapêutico
11.
BMC Neurol ; 23(1): 86, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855093

RESUMO

BACKGROUND: Outcome assessment in stroke patients is essential for evidence-based stroke care planning. Computed tomography (CT) is the mainstay of diagnosis in acute stroke. This study aimed to investigate whether CT-derived cervical fat-free muscle fraction (FFMF) as a biomarker of muscle quality is associated with outcome parameters after acute ischemic stroke. METHODS: In this retrospective study, 66 patients (mean age: 76 ± 13 years, 30 female) with acute ischemic stroke in the anterior circulation who underwent CT, including CT-angiography, and endovascular mechanical thrombectomy of the middle cerebral artery between August 2016 and January 2020 were identified. Based on densitometric thresholds, cervical paraspinal muscles covered on CT-angiography were separated into areas of fatty and lean muscle and FFMF was calculated. The study cohort was binarized based on median FFMF (cutoff value: < 71.6%) to compare clinical variables and outcome data between two groups. Unpaired t test and Mann-Whitney U test were used for statistical analysis. RESULTS: National Institute of Health Stroke Scale (NIHSS) (12.2 ± 4.4 vs. 13.6 ± 4.5, P = 0.297) and modified Rankin scale (mRS) (4.3 ± 0.9 vs. 4.4 ± 0.9, P = 0.475) at admission, and pre-stroke mRS (1 ± 1.3 vs. 0.9 ± 1.4, P = 0.489) were similar between groups with high and low FFMF. NIHSS and mRS at discharge were significantly better in patients with high FFMF compared to patients with low FFMF (NIHSS: 4.5 ± 4.4 vs. 9.5 ± 6.7; P = 0.004 and mRS: 2.9 ± 2.1 vs.3.9 ± 1.8; P = 0.049). 90-day mRS was significantly better in patients with high FFMF compared to patients with low FFMF (3.3 ± 2.2 vs. 4.3 ± 1.9, P = 0.045). CONCLUSION: Cervical FFMF obtained from routine clinical CT might be a new imaging-based muscle quality biomarker for outcome prediction in stroke patients.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Projetos Piloto , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Músculos , Acidente Vascular Cerebral/diagnóstico por imagem
12.
Int J Cancer ; 151(9): 1431-1446, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603902

RESUMO

Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Cromatina , Inibidor p16 de Quinase Dependente de Ciclina/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
13.
Magn Reson Med ; 88(2): 546-574, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452155

RESUMO

Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.


Assuntos
Neoplasias Encefálicas , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Consenso , Dimaprit/análogos & derivados , Humanos , Imageamento por Ressonância Magnética/métodos , Prótons
14.
NMR Biomed ; 35(7): e4720, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35233847

RESUMO

In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST-MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three-dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion-correction algorithms specifically developed to handle the varying contrasts in CEST-MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST-MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST-MRI data, e.g., for large patient cohorts or in clinical routines.


Assuntos
Artefatos , Água , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
15.
BMC Med Educ ; 22(1): 803, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36397110

RESUMO

BACKGROUND: The use of artificial intelligence applications in medicine is becoming increasingly common. At the same time, however, there are few initiatives to teach this important and timely topic to medical students. One reason for this is the predetermined medical curriculum, which leaves very little room for new topics that were not included before. We present a flipped classroom course designed to give undergraduate medical students an elaborated first impression of AI and to increase their "AI readiness". METHODS: The course was tested and evaluated at Bonn Medical School in Germany with medical students in semester three or higher and consisted of a mixture of online self-study units and online classroom lessons. While the online content provided the theoretical underpinnings and demonstrated different perspectives on AI in medical imaging, the classroom sessions offered deeper insight into how "human" diagnostic decision-making differs from AI diagnoses. This was achieved through interactive exercises in which students first diagnosed medical image data themselves and then compared their results with the AI diagnoses. We adapted the "Medical Artificial Intelligence Scale for Medical Students" to evaluate differences in "AI readiness" before and after taking part in the course. These differences were measured by calculating the so called "comparative self-assessment gain" (CSA gain) which enables a valid and reliable representation of changes in behaviour, attitudes, or knowledge. RESULTS: We found a statistically significant increase in perceived AI readiness. While values of CSA gain were different across items and factors, the overall CSA gain regarding AI readiness was satisfactory. CONCLUSION: Attending a course developed to increase knowledge about AI in medical imaging can increase self-perceived AI readiness in medical students.


Assuntos
Estudantes de Medicina , Humanos , Alfabetização , Inteligência Artificial , Currículo , Faculdades de Medicina
16.
Magn Reson Med ; 86(1): 393-404, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586217

RESUMO

PURPOSE: The value of relaxation-compensated amide proton transfer (APT) and relayed nuclear Overhauser effect (rNOE) chemical exchange saturation transfer (CEST)-MRI has already been demonstrated in various neuro-oncological clinical applications. Recently, we translated the approach from 7T to a clinically relevant magnetic field strength of 3T. However, the overall acquisition time was still too long for a broad application in the clinical setting. The aim of this study was to establish a shorter acquisition protocol whilst maintaining the contrast behavior and reproducibility. METHODS: Ten patients with glioblastoma were examined using the previous state-of-the-art acquisition protocol at 3T. The acquired spectral data were retrospectively reduced to find the minimal amount of required information that allows obtaining the same contrast behavior. To further reduce the acquisition time, also the image readout was accelerated and the pre-saturation parameters were further optimized. RESULTS: In total, the overall acquisition time could be reduced from 19 min to under 7 min. One key finding was that, when evaluated by the relaxation-compensated inverse metric, a contrast correction for B1 -field inhomogeneities at 3T can also be achieved reliably with CEST data at only one B1 value. In contrast, a 1-point B1 -correction was not sufficient for the common linear difference evaluation. The reproducibility of the new clinical routine acquisition protocol was similar to the previous state-of-the-art protocol with limits of agreement below 20%. CONCLUSIONS: The substantial reduction in acquisition time by about 64% now allows the application of 3D relaxation-compensated APT and rNOE CEST-MRI for examinations of the human brain at 3T in clinical routine.


Assuntos
Neoplasias Encefálicas , Prótons , Amidas , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos Retrospectivos
17.
Radiology ; 295(1): 181-189, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068505

RESUMO

Background Altered metabolism is a characteristic of cancer. Because of a shift in glucose metabolism from oxidative phosphorylation to lactate production for energy generation, malignant tumors are characterized by increased glycolysis followed by lactic acid fermentation, even in the presence of abundant oxygen (the Warburg effect). Purpose To quantitatively investigate dynamic oxygen 17 (17O) MRI in healthy participants and participants with untreated glioma to understand altered cerebral oxygen metabolism in glioma. Materials and Methods In this prospective study conducted from September 2016 to June 2018, individuals with newly diagnosed previously untreated glioma (World Health Organization grade II-IV) and healthy volunteers were included. Dynamic 17O MRI was performed with a 7.0-T whole-body system. 17O2 gas inhalation enabled dynamic measurement of the cerebral metabolic rate of oxygen (CMRO2) consumption. In healthy volunteers and participants with glioma, CMRO2 values in gray matter and white matter volumes were compared by using Wilcoxon signed rank tests. In participants with glioma, the tumor volume and tumor subcompartments were compared with normal-appearing gray matter and white matter by using Friedman test followed by Holm-Sidak post hoc tests. Results Ten participants (mean age, 42 years ± 18 [standard deviation]; nine men) with glioma and three healthy volunteers (mean age, 44 years ± 21; all men) were evaluated. CMRO2 was higher in normal-appearing gray matter compared with white matter in both participants with glioma (2.36 µmol/g/min ± 0.22 vs 0.75 µmol/g/min ± 0.10, respectively) and healthy volunteers (2.38 µmol/g/min ± 0.15 vs 0.63 µmol/g/min ± 0.05, respectively) (P < .001 and P = .03, respectively). In the tumor region, CMRO2 was reduced (high-grade tumor CMRO2, 0.23 µmol/g/min ± 0.07; low-grade tumor CMRO2, 0.39 µmol/g/min ± 0.16; overall CMRO2, 0.34 µmol/g/min ± 0.16) compared with normal-appearing gray matter (P < .001) and normal-appearing white matter (P < .001) in accordance with the Warburg theorem. Conclusion Dynamic oxygen 17 MRI method at 7.0 T as a direct metabolic imaging technique in glioma enabled quantitative visualization of the Warburg effect. A general reduction in oxidative glycolysis was observed in accordance with the Warburg theorem. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Rapalino in this issue.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio , Isótopos de Oxigênio , Oxigênio/metabolismo , Adulto , Idoso , Feminino , Substância Cinzenta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Substância Branca/metabolismo , Adulto Jovem
18.
Magn Reson Med ; 84(4): 1707-1723, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32237169

RESUMO

PURPOSE: In vivo 31 P MRSI enables noninvasive mapping of absolute pH values via the pH-dependent chemical shifts of inorganic phosphates (Pi ). A particular challenge is the quantification of extracellular Pi with low SNR in vivo. The purpose of this study was to demonstrate feasibility of assessing both intra- and extracellular pH across the whole human brain via volumetric 31 P MRSI at 7T. METHODS: 3D 31 P MRSI data sets of the brain were acquired from three healthy volunteers and three glioma patients. Low-rank denoising was applied to enhance the SNR of 31 P MRSI data sets that enables detection of extracellular Pi at high spatial resolutions. A robust two-compartment quantification model for intra- and extracellular Pi signals was implemented. RESULTS: In particular low-rank denoising enabled volumetric mapping of intra- and extracellular pH in the human brain with voxel sizes of 5.7 mL. The average intra- and extracellular pH measured in white matter of healthy volunteers were 7.00 ± 0.00 and 7.33 ± 0.03, respectively. In tumor tissue of glioma patients, both the average intra- and extracellular pH increased to 7.12 ± 0.01 and 7.44 ± 0.01, respectively, compared to normal appearing tissue. CONCLUSION: Mapping of pH values via 31 P MRSI at 7T using the proposed two-compartment quantification model improves reliability of pH values obtained in vivo, and has the potential to provide novel insights into the pH heterogeneity of various tissues.


Assuntos
Encéfalo , Glioma , Encéfalo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
19.
Magn Reson Med ; 83(3): 920-934, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31532006

RESUMO

PURPOSE: The application of amide proton transfer (APT) CEST MRI for diagnosis of breast cancer is of emerging interest. However, APT imaging in the human breast is affected by the ubiquitous fat signal preventing a straightforward application of existing acquisition protocols. Although the spectral region of the APT signal does not coincide with fat resonances, the fat signal leads to an incorrect normalization of the Z-spectrum, and therefore to distorted APT effects. In this study, we propose a novel normalization for APT-CEST MRI that corrects for fat signal-induced artifacts in the postprocessing without the need for application of fat saturation schemes or water-fat separation approaches. METHODS: The novel normalization uses the residual signal at the spectral position of the direct water saturation to estimate the fat contribution. A comprehensive theoretical description of the normalization for an arbitrary phase relation of the water and fat signal is provided. Functionality and applicability of the proposed normalization was demonstrated by in vitro and in vivo experiments. RESULTS: In vitro, an underestimation of the conventional APT contrast of approximately -1.2% per 1% fat fraction was observed. The novel normalization yielded an APT contrast independent of the fat contribution, which was also independent of the water-fat phase relation. This allowed APT imaging in patients with mamma carcinoma corrected for fat signal contribution, field inhomogeneities, spillover dilution, and water relaxation effects. CONCLUSION: The proposed normalization increases the specificity of APT imaging in tissues with varying fat content and represents a time-efficient and specific absorption rate-efficient alternative to fat saturation and water-fat separation approaches.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tecido Adiposo/patologia , Adulto , Algoritmos , Artefatos , Índice de Massa Corporal , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Pessoa de Meia-Idade , Distribuição Normal , Óleo de Girassol , Temperatura
20.
Magn Reson Med ; 84(1): 182-191, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31788870

RESUMO

PURPOSE: Dynamic glucose-enhanced (DGE)-MRI based on chemical exchange-sensitive MRI, that is, glucoCEST and gluco-chemical exchange-sensitive spin-lock (glucoCESL), is intrinsically prone to motion-induced artifacts because the final DGE contrast relies on the difference of images, which were acquired with a time gap of several mins. In this study, identification of different types of motion-induced artifacts led to the development of a 3D acquisition protocol for DGE examinations in the human brain at 7 T with improved robustness in the presence of subject motion. METHODS: DGE-MRI was realized by the chemical exchange-sensitive spin-lock approach based either on relaxation rate in the rotating frame (R1ρ )-weighted or quantitative R1ρ imaging. A 3D image readout was implemented at 7 T, enabling retrospective volumetric coregistration of the image series and quantification of subject motion. An examination of a healthy volunteer without administration of glucose allowed for the identification of isolated motion-induced artifacts. RESULTS: Even after coregistration, significant motion-induced artifacts remained in the DGE contrast based on R1ρ -weighted images. This is due to the spatially varying sensitivity of the coil and was found to be compensated by a quantitative R1ρ approach. The coregistered quantitative approach allowed the observation of a clear increase of the DGE contrast in a patient with glioblastoma, which did not correlate with subject motion. CONCLUSION: The presented 3D acquisition protocol enables DGE-MRI examinations in the human brain with improved robustness against motion-induced artifacts. Correction of motion-induced artifacts is of high importance for DGE-MRI in clinical studies where an unambiguous assignment of contrast changes due to an actual change in local glucose concentration is a prerequisite.


Assuntos
Artefatos , Glucose , Encéfalo/diagnóstico por imagem , Humanos , Aumento da Imagem , Imageamento por Ressonância Magnética , Movimento (Física) , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA