Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Placenta ; 118: 66-69, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35042085

RESUMO

Antiphospholipid antibodies (aPL) are autoantibodies that cause pregnancy disorders by a poorly defined mechanism that involves the placenta. The human placenta is covered by a single multinucleated cell, the syncytiotrophoblast, which extrudes vast numbers of extracellular vesicles (EVs) into the maternal blood. Extracellular vesicles are tiny packages of cellular material used by cells for remote signalling. In normal pregnancy, placental EVs assist maternal adaptations to pregnancy. We have previously shown that aPL alter the cargo of placental EVs, increasing the load of danger signals. These changes in EV cargo may explain how aPL contribute to the increased risk of recurrent miscarriage, preeclampsia and stillbirths observed in aPL-affected pregnancies. An additional possibility, that aPL alters the targeting of placental EVs to maternal organs to cause maternal maladaptation to pregnancy was investigated in this study.


Assuntos
Anticorpos Antifosfolipídeos/fisiologia , Vesículas Extracelulares/metabolismo , Placenta/metabolismo , Complicações na Gravidez/etiologia , Animais , Feminino , Humanos , Camundongos , Gravidez
2.
Mater Today Bio ; 13: 100212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198960

RESUMO

Despite the demonstrated effectiveness of nano-materials for drug delivery to the brain, a comprehensive understanding of their transport processes across the blood brain barrier (BBB) remains undefined. This multidisciplinary study aimed to gain an insight into the transport processes across BBB, focusing on the transcytosis of liposomes and the impact of liposomal pH-sensitivity. Glutathione-PEGylated pH-sensitive (GSH-PEG-pSL) and non pH-sensitive liposomes (GSH-PEG-L) were fluorescently labelled with rhodamine-DOPE and calcein, both impermeable to biomembranes. Following exposure to brain microvascular endothelial cells (hBMECs), the key functional component of the BBB, intracellular trafficking were evaluated by confocal live-cell imaging. The exocytosed liposomes, including naturally-occurring extracellular vesicles (EVs), were collected using differential centrifugation and and characterised regarding the EV yield, morphology and EVs origin using nanoparticle tracking analysis, transmission electron microscopy and flow cytometry. The transcytosis of liposomes through a verified BBB model comprising of hBMECs monolayer was also quantified. GSH-PEG-L was initially retained in the endo-lysosomes before exocytosed while packed in EVs of different sizes (<100 â€‹nm to >1 â€‹µm) while GSH-PEG-pSL underwent endosome escape with less degree of exocytosis with more fluorescence remaining in the cytoplasm. Compared with the untreated, hBMECs treated with GSH-PEG-L increased the yield of nano-EV and medium-EV by 7.9-fold and 4.6-fold, respectively. Conversely, GSH-pSL-treated cells produced 2.9-fold more nano-EVs but 2-fold less medium-EVs than the control cells. These vesicles were CD144-positive confirming their endothelial cell-origin. GSH-PEG-L demonstrated 2-fold higher efficiencies than GSH-PEG-pSL to cross the in vitro BBB model via exocytosis. Taken together, GSH-PEG-L might utilize EV secretion pathway to achieve transcytosis across brain endothelial cells of the BBB while liposomal pH-sensitivity favors cytoplasmic delivery.

3.
Biomed Res Int ; 2014: 841489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243188

RESUMO

UNLABELLED: We have previously shown that adenosine amine congener (ADAC), a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. METHODS: ADAC (25-300 µg/kg) was administered intraperitoneally to Wistar rats (8-10 weeks old) at intervals (6-72 hours) after exposure to traumatic noise (8-16 kHz, 110 dB sound pressure level, 2 hours). Hearing sensitivity was assessed using auditory brainstem responses (ABR) before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous) administration. RESULTS: ADAC was most effective in the first 24 hours after noise exposure at doses >50 µg/kg, providing up to 21 dB protection (averaged across 8-28 kHz). Pharmacokinetic studies demonstrated a short (5 min) half-life of ADAC in plasma after intravenous administration without detection of degradation products. CONCLUSION: Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.


Assuntos
Adenosina/análogos & derivados , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Adenosina/administração & dosagem , Adenosina/farmacocinética , Adenosina/farmacologia , Adenosina/uso terapêutico , Animais , Cóclea/efeitos dos fármacos , Cóclea/lesões , Relação Dose-Resposta a Droga , Perda Auditiva Provocada por Ruído/fisiopatologia , Injeções Intraperitoneais , Injeções Intravenosas , Masculino , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacocinética , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA