Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Manage ; 65(6): 829-842, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32206834

RESUMO

Biological invasions are a major driver of human-induced global environmental change. This makes monitoring of potential spread, population changes and control measures necessary for guiding management. We illustrate the value of integrated methods (species distribution modelling (SDM), plant population monitoring and questionnaires) for monitoring and assessing invasions of Heracleum mantegazzianum (giant hogweed) over time in Switzerland. SDMs highlighted the potential spread of the species, uncovered ecological mechanisms underlying invasions and guided monitoring at a regional level. We used adaptive and repeat plant sampling to monitor invasive population status and changes, and assess the effectiveness of H. mantegazzianum management over three periods (2005, 2013 and 2018) within the pre-Alps, Vaud. We also conducted questionnaire surveys with managers and the public. Multiscale modelling, and integrating global and regional SDMs, provided the best predictions, showing that H. mantegazzianum can potentially invade large parts of Switzerland, especially below 2 000 m a.s.l. Over time, populations of invasive H. mantegazzianum in the Vaud pre-Alps have declined, which is most likely due to a sharp rise in management uptake post 2007 (7% of municipalities before 2007 to 86% in 2018). The level of known invasive populations has decreased by 54% over time. Some municipalities have even successfully eradicated H. mantegazzianum within their borders. However, a few areas, particularly in the rural, higher-altitude municipalities, where management was not implemented effectively, populations have expanded, which could hamper control efforts at lower altitudes. We provide encouraging evidence that control measures can be effective in reducing plant invasions with long-term commitment, as well as a good template for using integrated methodological approaches to better study and monitor invasive alien species.


Assuntos
Heracleum , Humanos , Espécies Introduzidas , Suíça
2.
Mol Ecol ; 23(20): 5089-101, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25223217

RESUMO

Extensive gene flow between wheat (Triticum sp.) and several wild relatives of the genus Aegilops has recently been detected despite notoriously high levels of selfing in these species. Here, we assess and model the spread of wheat alleles into natural populations of the barbed goatgrass (Aegilops triuncialis), a wild wheat relative prevailing in the Mediterranean flora. Our sampling, based on an extensive survey of 31 Ae. triuncialis populations collected along a 60 km × 20 km area in southern Spain (Grazalema Mountain chain, Andalousia, totalling 458 specimens), is completed with 33 wheat cultivars representative of the European domesticated pool. All specimens were genotyped with amplified fragment length polymorphism with the aim of estimating wheat admixture levels in Ae. triuncialis populations. This survey first confirmed extensive hybridization and backcrossing of wheat into the wild species. We then used explicit modelling of populations and approximate Bayesian computation to estimate the selfing rate of Ae. triuncialis along with the magnitude, the tempo and the geographical distance over which wheat alleles introgress into Ae. triuncialis populations. These simulations confirmed that extensive introgression of wheat alleles (2.7 × 10(-4) wheat immigrants for each Ae. triuncialis resident, at each generation) into Ae. triuncialis occurs despite a high selfing rate (Fis ≈ 1 and selfing rate = 97%). These results are discussed in the light of risks associated with the release of genetically modified wheat cultivars in Mediterranean agrosystems.


Assuntos
Fluxo Gênico , Hibridização Genética , Poaceae/genética , Triticum/genética , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , DNA de Plantas/genética , Genética Populacional , Modelos Genéticos , Espanha
3.
Mol Ecol Resour ; 20(5): 1191-1205, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32304133

RESUMO

Erosion of biodiversity generated by anthropogenic activities has been studied for decades and in many areas at the species level, using taxa monitoring. In contrast, genetic erosion within species has rarely been tracked, and is often studied by inferring past population dynamics from contemporaneous estimators. An alternative to such inferences is the direct examination of past genes, by analysing museum collection specimens. While providing direct access to genetic variation over time, historical DNA is usually not optimally preserved, and it is necessary to apply genotyping methods based on hybridization-capture to unravel past genetic variation. In this study, we apply such a method (i.e., HyRAD), to large time series of two butterfly species in Finland, and present a new bioinformatic pipeline, namely PopHyRAD, that standardizes and optimizes the analysis of HyRAD data at the within-species level. In the localities for which the data retrieved have sufficient power to accurately examine genetic dynamics through time, we show that genetic erosion has increased across the last 100 years, as revealed by signatures of allele extinctions and heterozygosity decreases, despite local variations. In one of the two butterflies (Erebia embla), isolation by distance also increased through time, revealing the effect of greater habitat fragmentation over time.


Assuntos
Borboletas , Evolução Molecular , Animais , Biodiversidade , Borboletas/classificação , Borboletas/genética , Ecossistema , Finlândia , Variação Genética , Museus , Dinâmica Populacional
4.
Ecol Evol ; 8(3): 1480-1495, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435226

RESUMO

Analyzing genetic variation through time and space is important to identify key evolutionary and ecological processes in populations. However, using contemporary genetic data to infer the dynamics of genetic diversity may be at risk of a bias, as inferences are performed from a set of extant populations, setting aside unavailable, rare, or now extinct lineages. Here, we took advantage of new developments in next-generation sequencing to analyze the spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus, a steppic Southwestern-Palearctic species. We applied a recently developed hybridization capture (hyRAD) protocol that allows retrieving orthologous sequences even from degraded DNA characteristic of museum specimens. We identified single nucleotide polymorphisms in 68 historical and 51 modern samples in order to (i) unravel the spatial genetic structure across part of the species distribution and (ii) assess the loss of genetic diversity over the past century in Swiss populations. Our results revealed (i) the presence of three potential glacial refugia spread across the European continent and converging spatially in the Alpine area. In addition, and despite a limited population sample size, our results indicate (ii) a loss of allelic richness in contemporary Swiss populations compared to historical populations, whereas levels of expected heterozygosities were not significantly different. This observation is compatible with an increase in the bottleneck magnitude experienced by central European populations of O. decorus following human-mediated land-use change impacting steppic habitats. Our results confirm that application of hyRAD to museum samples produces valuable information to study genetic processes across time and space.

5.
PLoS One ; 11(3): e0151651, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999359

RESUMO

In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales.


Assuntos
Genômica/métodos , Hibridização de Ácido Nucleico/métodos , Manejo de Espécimes , Animais , Borboletas/genética , Biologia Computacional , DNA/genética , Confiabilidade dos Dados , Biblioteca Gênica , Loci Gênicos , Gafanhotos/genética , Polimorfismo de Nucleotídeo Único/genética , Mapeamento por Restrição , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA