Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 478(1): 25-32, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27470582

RESUMO

Bacteria utilize small-molecule iron chelators called siderophores to support growth in low-iron environments. The Escherichia coli catecholate siderophore enterobactin is synthesized in the cytoplasm upon iron starvation. Seven enzymes are required for enterobactin biosynthesis: EntA-F, H. Given that EntB-EntE and EntA-EntE interactions have been reported, we investigated a possible EntA-EntB-EntE interaction in E. coli cells. We subcloned the E. coli entA and entB genes into bacterial adenylate cylase two-hybrid (BACTH) vectors allowing for co-expression of EntA and EntB with N-terminal fusions to the adenylate cyclase fragments T18 or T25. BACTH constructs were functionally validated using the CAS assay and growth studies. Co-transformants expressing T18/T25-EntA and T25/T18-EntB exhibited positive two-hybrid signals indicative of an intracellular EntA-EntB interaction. To gain further insights into the interaction interface, we performed computational docking in which an experimentally validated EntA-EntE model was docked to the EntB crystal structure. The resulting model of the EntA-EntB-EntE ternary complex predicted that the IC domain of EntB forms direct contacts with both EntA and EntE. BACTH constructs that expressed the isolated EntB IC domain fused to T18/T25 were prepared in order to investigate interactions with T25/T18-EntA and T25/T18-EntE. CAS assays and growth studies demonstrated that T25-IC co-expressed with the EntB ArCP domain could complement the E. coli entB(-) phenotype. In agreement with the ternary complex model, BACTH assays demonstrated that the EntB IC domain interacts with both EntA and EntE.


Assuntos
Enterobactina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrolases/metabolismo , Ligases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Mapas de Interação de Proteínas , Escherichia coli/química , Escherichia coli/citologia , Proteínas de Escherichia coli/análise , Hidrolases/análise , Ligases/análise , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/análise , Domínios e Motivos de Interação entre Proteínas
2.
BMC Biotechnol ; 16(1): 68, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27619907

RESUMO

BACKGROUND: In the presence of sufficient iron, the Escherichia coli protein Fur (Ferric Uptake Regulator) represses genes controlled by the Fur box, a consensus sequence near or within promoters of target genes. De-repression of Fur-controlled genes occurs upon iron deprivation. In the E. coli chromosome, there is a bidirectional intercistronic promoter region with two non-overlapping Fur boxes. This region controls Fur-regulated expression of entCEBAH in the clockwise direction and fepB in the anticlockwise direction. RESULTS: We cloned the E. coli bidirectional fepB/entC promoter region into low-copy-number plasmid backbones (pACYC184 and pBR322) along with downstream sequences encoding epitope tags and a multiple cloning site (MCS) compatible with the bacterial adenylate cyclase two-hybrid (BACTH) system. The vector pFCF1 allows for iron-controlled expression of FLAG-tagged proteins, whereas the pFBH1 vector allows for iron-controlled expression of HA-tagged proteins. We showed that E. coli knockout strains transformed with pFCF1-entA, pFCF1-entE and pFBH1-entB express corresponding proteins with appropriate epitope tags when grown under iron restriction. Furthermore, transformants exhibited positive chrome azurol S (CAS) assay signals under iron deprivation, indicating that the transformants were functional for siderophore biosynthesis. Western blotting and growth studies in rich and iron-depleted media demonstrated that protein expression from these plasmids was under iron control. Finally, we produced the vector pFCF2, a pFCF1 derivative in which a kanamycin resistance (KanR) gene was engineered in the direction opposite of the MCS. The entA ORF was then subcloned into the pFCF2 MCS. Bidirectional protein expression in an iron-deprived pFCF2-entA transformant was confirmed using antibiotic selection, CAS assays and growth studies. CONCLUSIONS: The vectors pFCF1, pFCF2, and pFBH1 have been shown to use the fepB/entC promoter region to control bidirectional in trans expression of epitope-tagged proteins in iron-depleted transformants. In the presence of intracellular iron, protein expression from these constructs was abrogated due to Fur repression. The compatibility of the pFCF1 and pFBH1 backbones allows for iron-controlled expression of multiple epitope-tagged proteins from a single co-transformant.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Vetores Genéticos/genética , Ferro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo
3.
Biochimie ; 202: 159-165, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952947

RESUMO

Siderophores are high-affinity small-molecule chelators employed by bacteria to acquire iron from the extracellular environment. The Gram-negative bacterium Escherichia coli synthesizes and secretes enterobactin, a tris-catechol siderophore. Enterobactin is synthesized by six cytoplasmic enzyme activities: EntC, EntB (isochorismatase (IC) domain), EntA, EntE, EntB (aryl carrier protein (ArCP) domain), and EntF. While various pairwise protein-protein interactions have been reported between EntB, EntA, EntE, and EntF, evidence for an interaction between EntC and EntB has remained elusive. We have employed bacterial two-hybrid assays and in vivo crosslinking to demonstrate an intracellular EntC-EntB interaction. A T18-EntC/T25-EntB co-transformant exhibited a positive two-hybrid signal compared to a control T18-EntC/T25 co-transformant. In vivo formaldehyde crosslinking of E. coli cells co-expressing HA-tagged EntB and H6-tagged EntC resulted in an observable ∼80 kDa band on Western blots that cross-reacted with anti-HA and anti-H6, corresponding to one HA-EntB monomer (33 kDa) crosslinked with one H6-EntC monomer (45 kDa). This band disappeared upon sample boiling, confirming it to be a formaldehyde-crosslinked species. Bands of molecular masses greater than 80 kDa that cross-reacted with both antibodies were also observed. Automated docking of the crystal structures of monomeric EntC and dimeric EntB resulted in a top-ranked candidate docked ensemble in which the active sites of EntC and EntB were oriented in apposition and connected by an electropositive surface potentially capable of channeling negatively charged isochorismate. These research outcomes provide the first reported evidence of an EntC-EntB interaction, as well as the first experimental evidence of higher-order complexes containing EntC and EntB.


Assuntos
Enterobactina , Escherichia coli , Eletricidade Estática , Transporte Biológico , Formaldeído
4.
ACS Infect Dis ; 8(8): 1533-1542, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822715

RESUMO

SARS-CoV-2 non-structural protein 13 (nsp13) is a highly conserved helicase and RNA 5'-triphosphatase. It uses the energy derived from the hydrolysis of nucleoside triphosphates for directional movement along the nucleic acids and promotes the unwinding of double-stranded nucleic acids. Nsp13 is essential for replication and propagation of all human and non-human coronaviruses. Combined with its defined nucleotide binding site and druggability, nsp13 is one of the most promising candidates for the development of pan-coronavirus therapeutics. Here, we report the development and optimization of bioluminescence assays for kinetic characterization of nsp13 ATPase activity in the presence and absence of single-stranded DNA. Screening of a library of 5000 small molecules in the presence of single-stranded DNA resulted in the discovery of six nsp13 small-molecule inhibitors with IC50 values ranging from 6 ± 0.5 to 50 ± 6 µM. In addition to providing validated methods for high-throughput screening of nsp13 in drug discovery campaigns, the reproducible screening hits we present here could potentially be chemistry starting points toward the development of more potent and selective nsp13 inhibitors, enabling the discovery of antiviral therapeutics.


Assuntos
Metiltransferases/metabolismo , RNA Helicases/metabolismo , SARS-CoV-2/química , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases , COVID-19/virologia , DNA de Cadeia Simples , Humanos , Metiltransferases/antagonistas & inibidores , Ácidos Nucleicos/metabolismo , RNA Helicases/antagonistas & inibidores , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/antagonistas & inibidores
5.
ACS Infect Dis ; 7(8): 2214-2220, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34152728

RESUMO

In this study, we have focused on the structure-based design of the inhibitors of one of the two SARS-CoV-2 methyltransferases (MTases), nsp14. This MTase catalyzes the transfer of the methyl group from S-adenosyl-l-methionine (SAM) to cap the guanosine triphosphate moiety of the newly synthesized viral RNA, yielding the methylated capped RNA and S-adenosyl-l-homocysteine (SAH). As the crystal structure of SARS-CoV-2 nsp14 is unknown, we have taken advantage of its high homology to SARS-CoV nsp14 and prepared its homology model, which has allowed us to identify novel SAH derivatives modified at the adenine nucleobase as inhibitors of this important viral target. We have synthesized and tested the designed compounds in vitro and shown that these derivatives exert unprecedented inhibitory activity against this crucial enzyme. The docking studies nicely explain the contribution of an aromatic part attached by a linker to the position 7 of the 7-deaza analogues of SAH.


Assuntos
COVID-19 , Metiltransferases , Exorribonucleases , Humanos , Ligantes , Metiltransferases/genética , SARS-CoV-2 , Proteínas não Estruturais Virais
6.
Biochimie ; 127: 1-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27086082

RESUMO

The siderophore enterobactin is synthesized by the enzymes EntA-F and EntH in the Escherichia coli cytoplasm. We previously reported in vitro evidence of an interaction between tetrameric EntA and monomeric EntE. Here we used bacterial adenylate cyclase two-hybrid (BACTH) assays to demonstrate that the E. coli EntA-EntE interaction occurs intracellularly. Furthermore, to obtain information on subunit orientation in the EntA-EntE complex, we fused BACTH reporter fragments T18 and T25 to EntA and EntE in both N-terminal and C-terminal orientations. To validate functionality of our fusion proteins, we performed Chrome Azurol S (CAS) assays using E. coli entE(-) and entA(-) knockout strains transformed with our BACTH constructs. We found that transformants expressing N-terminal and C-terminal T18/T25 fusions to EntE exhibited CAS signals, indicating that these constructs could rescue the entE(-) phenotype. While expression of EntA with N-terminal T18/T25 fusions exhibited CAS signals, C-terminal fusions did not, presumably due to disruption of the EntA tetramer in vivo. Bacterial growth assays supported our CAS findings. Co-transformation of functional T18/T25 fusions into cya(-)E. coli BTH101 cells resulted in positive BACTH signals only when T18/T25 fragments were fused to the N-termini of both EntA and EntE. Co-expression of N-terminally fused EntA with C-terminally fused EntE resulted in no detectable BACTH signal. Analysis of protein expression by Western blotting confirmed that the loss of BACTH signal was not due to impaired expression of fusion proteins. Based on our results, we propose that the N-termini of EntA and EntE are proximal in the intracellular complex, while the EntA N-terminus and EntE C-terminus are distal. A protein-protein docking simulation using SwarmDock was in agreement with our experimental observations.


Assuntos
Enterobactina/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ligases/química , Ligases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Subunidades Proteicas/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Espaço Intracelular/metabolismo , Simulação de Acoplamento Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Técnicas do Sistema de Duplo-Híbrido
7.
PLoS One ; 7(4): e34888, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514687

RESUMO

Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone.


Assuntos
Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Animais , Linhagem Celular , Proteínas Contráteis/genética , Citocinese/genética , Drosophila , Proteínas de Drosophila/metabolismo , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA