Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Antimicrob Chemother ; 79(7): 1547-1554, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727613

RESUMO

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.


Assuntos
Anfotericina B , Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Pele , Humanos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Fosforilcolina/administração & dosagem , Fosforilcolina/uso terapêutico , Antiprotozoários/farmacocinética , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Masculino , Adulto , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Feminino , Pele/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Anfotericina B/administração & dosagem , Adolescente , Ásia Meridional
2.
J Antimicrob Chemother ; 75(11): 3260-3268, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32780098

RESUMO

BACKGROUND: Conventional miltefosine dosing (2.5 mg/kg/day) for treatment of visceral leishmaniasis (VL) is less effective in children than in adults. A higher allometric dose (median 3.2 mg/kg/day) was therefore investigated in paediatric VL patients in Eastern Africa. Results of this trial showed an unforeseen, lower than dose-proportional increase in exposure. Therefore, we performed a pooled model-based analysis of the paediatric data available from both dosing regimens to characterize observed non-linearities in miltefosine pharmacokinetics (PK). METHODS: Fifty-one children with VL were included in this analysis, treated with either a conventional (n = 21) or allometric (n = 30) miltefosine dosing regimen. PK data were analysed using non-linear mixed-effects modelling. RESULTS: A two-compartment model following first-order absorption and linear elimination, with two separate effects on relative oral bioavailability, was found to fit these data best. A 69% lower bioavailability at treatment start was estimated, presumably due to initial malnourishment and malabsorption. Stagnation in miltefosine accumulation in plasma, hampering increased drug exposure, was related to the increase in cumulative dose (mg/kg/day). However, the allometric regimen increased exposure 1.7-fold in the first treatment week and reduced the time to reach the PK target by 17.4%. CONCLUSIONS: Miltefosine PK in children suffering from VL are characterized by dose-dependent non-linearities that obstruct the initially expected exposure levels. Bioavailability appeared to be affected by the cumulative dose, possibly as a consequence of impaired absorption. Despite this, allometric dosing led to a faster target achievement and increased exposure compared with conventional dosing.


Assuntos
Antiprotozoários , Leishmaniose Visceral , Adulto , África Oriental , Antiprotozoários/uso terapêutico , Criança , Humanos , Leishmaniose Visceral/tratamento farmacológico , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-31036692

RESUMO

Host immune responses are pivotal for the successful treatment of the leishmaniases, a spectrum of infections caused by Leishmania parasites. Previous studies speculated that augmenting cytokines associated with a type 1 T-helper cell (Th1) response is necessary to combat severe forms of leishmaniasis, and it has been hypothesized that the antileishmanial drug miltefosine is capable of immunomodulation and induction of Th1 cytokines. A better understanding of the immunomodulatory effects of miltefosine is central to providing a rationale regarding synergistic mechanisms of activity to combine miltefosine optimally with other conventional and future antileishmanials that are currently under development. Therefore, a systematic literature search was performed to evaluate to what extent and how miltefosine influences the host Th1 response. Miltefosine's effects observed in both a preclinical and a clinical context associated with immunomodulation in the treatment of leishmaniasis are evaluated in this review. A total of 27 studies were included in the analysis. Based on the current evidence, miltefosine is not only capable of inducing direct parasite killing but also of modulating the host immunity. Our findings suggest that miltefosine-induced activation of Th1 cytokines, particularly represented by increased gamma interferon (IFN-γ) and interleukin 12 (IL-12), is essential to prevail over the Leishmania-driven Th2 response. Differences in miltefosine-induced host-mediated effects between in vitro, ex vivo, animal model, and human studies are further discussed. All things considered, an effective treatment with miltefosine is acquired by enhanced functional Th1 cytokine responses and may further be enhanced in combination with immunostimulatory agents.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Imunomodulação/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Fosforilcolina/análogos & derivados , Animais , Citocinas/metabolismo , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/metabolismo , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico
4.
Pharm Res ; 35(5): 102, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556786

RESUMO

The third author's name was mistakenly published with an umlaut (Isabelle Köhler). The correct spelling is "Isabelle Kohler".

5.
Pharm Res ; 35(3): 64, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29450650

RESUMO

Despite substantial research carried out over the last decades, it remains difficult to understand the wide range of pharmacological effects of dopaminergic agents. The dopaminergic system is involved in several neurological disorders, such as Parkinson's disease and schizophrenia. This complex system features multiple pathways implicated in emotion and cognition, psychomotor functions and endocrine control through activation of G protein-coupled dopamine receptors. This review focuses on the system-wide effects of dopaminergic agents on the multiple biochemical and endocrine pathways, in particular the biomarkers (i.e., indicators of a pharmacological process) that reflect these effects. Dopaminergic treatments developed over the last decades were found to be associated with numerous biochemical pathways in the brain, including the norepinephrine and the kynurenine pathway. Additionally, they have shown to affect peripheral systems, for example the hypothalamus-pituitary-adrenal (HPA) axis. Dopaminergic agents thus have a complex and broad pharmacological profile, rendering drug development challenging. Considering the complex system-wide pharmacological profile of dopaminergic agents, this review underlines the needs for systems pharmacology studies that include: i) proteomics and metabolomics analysis; ii) longitudinal data evaluation and mathematical modeling; iii) pharmacokinetics-based interpretation of drug effects; iv) simultaneous biomarker evaluation in the brain, the cerebrospinal fluid (CSF) and plasma; and v) specific attention to condition-dependent (e.g., disease) pharmacology. Such approach is considered essential to increase our understanding of central nervous system (CNS) drug effects and substantially improve CNS drug development.


Assuntos
Dopaminérgicos/farmacologia , Desenvolvimento de Medicamentos/métodos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Receptores Dopaminérgicos/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Modelos Animais de Doenças , Dopaminérgicos/uso terapêutico , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Cinurenina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Norepinefrina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Transdução de Sinais/efeitos dos fármacos
6.
Pharm Res ; 35(9): 182, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30062590

RESUMO

PURPOSE: Changes in drug absorption and first-pass metabolism have been reported throughout the pediatric age range. Our aim is to characterize both intestinal and hepatic CYP3A-mediated metabolism of midazolam in children in order to predict first-pass and systemic metabolism of CYP3A substrates. METHODS: Pharmacokinetic (PK) data of midazolam and 1-OH-midazolam from 264 post-operative children 1-18 years of age after oral administration were analyzed using a physiological population PK modelling approach. In the model, consisting of physiological compartments representing the gastro-intestinal tract and liver,intrinsic intestinal and hepatic clearances were estimated to derive values for bioavailability and plasma clearance. RESULTS: The whole-organ intrinsic clearance in the gut wall and liver were found to increase with body weight, with a 105 (95% confidence interval (CI): 5-405) times lower intrinsic gut wall clearance than the intrinsic hepatic clearance (i.e. 5.08 L/h (relative standard error (RSE) 10%) versus 527 L/h (RSE 7%) for a 16 kg individual, respectively). When expressed per gram of organ, intrinsic clearance increases with increasing body weight in the gut wall, but decreases in the liver, indicating that CYP3A-mediated intrinsic clearance and local bioavailability in the gut wall and liver do not change with age in parallel. The resulting total bioavailability was found to be age-independent with a median of 20.8% in children (95%CI: 3.8-50.0%). CONCLUSION: In conclusion, the intrinsic CYP3A-mediated gut wall clearance is substantially lower than the intrinsic hepatic CYP3A-mediated clearance in children from 1 to 18 years of age, and contributes less to the overall first-pass metabolism compared to adults.


Assuntos
Anestésicos Intravenosos/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Midazolam/farmacocinética , Adolescente , Algoritmos , Anestésicos Intravenosos/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Midazolam/metabolismo , Modelos Biológicos
7.
Int J Antimicrob Agents ; 59(1): 106459, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34695563

RESUMO

Miltefosine is an alkylphosphocholine agent with a broad spectrum of antiparasitic properties. For over two decades, miltefosine has remained the only oral drug licensed and used in the treatment of the neglected tropical disease, leishmaniasis. The last extensive review of the pharmacology of miltefosine was published in 2012. Additional data on the clinical pharmacokinetics (PK) and pharmacodynamics (PD) of miltefosine have become available in the last decade, and there are ongoing and future studies in this area. Miltefosine PK are characterized by slow absorption and elimination, resulting in accumulation of drug in plasma until the end of treatment. Several recent studies established exposure-response relationships for various regimens of miltefosine in the treatment of visceral and cutaneous leishmaniasis, leading to the identification of PK parameters predictive of clinical relapse and outcome. This review provides an update on the most recent developments in the area of clinical pharmacology of miltefosine, including a discussion of the current dosing regimens.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Humanos
8.
AAPS J ; 21(5): 81, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31250333

RESUMO

Recently a framework was presented to assess whether pediatric covariate models for clearance can be extrapolated between drugs sharing elimination pathways, based on extraction ratio, protein binding, and other drug properties. Here we evaluate when a pediatric covariate function for midazolam clearance can be used to scale clearance of other CYP3A substrates. A population PK model including a covariate function for clearance was developed for midazolam in children aged 1-17 years. Commonly used CYP3A substrates were selected and using the framework, it was assessed whether the midazolam covariate function accurately scales their clearance. For eight substrates, reported pediatric clearance values were compared numerically and graphically with clearance values scaled using the midazolam covariate function. For sildenafil, clearance values obtained with population PK modeling based on pediatric concentration-time data were compared with those scaled with the midazolam covariate function. According to the framework, a midazolam covariate function will lead to systemically accurate clearance scaling (absolute prediction error (PE) < 30%) for CYP3A substrates binding to albumin with an extraction ratio between 0.35 and 0.65 when binding < 10% in adults, between 0.05 and 0.55 when binding > 90%, and with an extraction ratio ranging between these values when binding between 10 and 90%. Scaled clearance values for eight commonly used CYP3A substrates were reasonably accurate (PE < 50%). Scaling of sildenafil clearance was accurate (PE < 30%). We defined for which CYP3A substrates a pediatric covariate function for midazolam clearance can accurately scale plasma clearance in children. This scaling approach may be useful for CYP3A substrates with scarce or no available pediatric PK information.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Midazolam/farmacocinética , Modelos Biológicos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Citrato de Sildenafila/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA