Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circ Res ; 123(8): 986-995, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30355033

RESUMO

RATIONALE: Metformin has been demonstrated to decrease infarct size (IS) and prevent postinfarction left ventricular (LV) remodeling in rodents when given intravenously at the time of reperfusion. It remains unclear whether similar cardioprotection can be achieved in a large animal model. OBJECTIVE: The objective of this study was to determine whether intravascular infusion of metformin at the time of reperfusion reduces myocardial IS in a porcine model of acute myocardial infarction. METHODS AND RESULTS: In a blinded and randomized preclinical study, closed-chest swine (n=20) were subjected to a 60-minute left anterior descending coronary artery occlusion to produce myocardial infarction. Contrast-enhanced computed tomography was performed during left anterior descending coronary artery occlusion to assess the ischemic area-at-risk. Animals were randomized to receive either metformin or vehicle as an initial intravenous bolus (5 mg/kg) 8 minutes before reperfusion, followed by a 15-minute left coronary artery infusion (1 mg/kg per minute) commencing with the onset of reperfusion. Echocardiography and computed tomographic imaging of LV function were performed 1 week later, at which time the heart was removed for postmortem pathological analysis of area-at-risk and IS (triphenyltetrazolium chloride). Baseline variables including hemodynamics and LV function were similar between groups. Peak circulating metformin concentrations of 374±35 µmol/L were achieved 15 minutes after reperfusion. There was no difference between the area-at-risk as a percent of LV mass by computed tomography (vehicle: 20.7%±1.1% versus metformin: 19.7%±1.3%; P=0.59) or postmortem pathology (22.4%±1.2% versus 20.2%±1.2%; P=0.21). IS relative to area-at-risk averaged 44.5%±5.0% in vehicle-treated versus 38.2%±6.8% in metformin-treated animals ( P=0.46). There was no difference in global function 7 days after myocardial infarction as assessed by echocardiography or computed tomographic ejection fraction (56.2%±2.6% versus 56.3%±2.4%; P=0.98). CONCLUSIONS: In contrast to rodent hearts, postconditioning with high-dose metformin administered immediately before reperfusion does not reduce IS or improve LV function 7 days after myocardial infarction in swine. These results reinforce the importance of rigorously testing therapies in large animal models to facilitate clinical translation of novel cardioprotective therapies.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Metformina/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Ecocardiografia , Infusões Intra-Arteriais , Injeções Intravenosas , Metformina/farmacocinética , Tomografia Computadorizada Multidetectores , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Especificidade da Espécie , Sus scrofa , Fatores de Tempo
2.
Biomaterials ; 74: 19-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26433489

RESUMO

Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7(+)] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7(+)] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7(+)] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.


Assuntos
Adesão Celular/fisiologia , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Traumatismo por Reperfusão/terapia , Selectinas/fisiologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Fucosiltransferases/metabolismo , Projetos Piloto , Suínos
3.
PeerJ ; 3: e764, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699211

RESUMO

Background. Activation of the innate immune system by cholesterol accelerates atherosclerosis. High levels or modified forms of cholesterol stimulate release of the inflammatory cytokines IL-12 and IL-18 that synergistically stimulate T lymphocytes to produce the atherogenic cytokine interferon-γ. While activation of the innate immune system by cholesterol is well-described in animal models and human subjects with high cholesterol levels or known atherosclerotic disease, the interaction of cholesterol and lipoproteins with the innate immune system in human subjects without known atherosclerosis is less well-described. The goal of our study was to assess the TH1 modulating cytokines IL-12 p40 and IL-18, and their counter regulatory cytokines IL-18 binding protein and IL-27, to determine if their levels are linked to cholesterol levels or other factors. Methods. We performed a blinded, randomized hypothesis-generating study in human subjects without known atherosclerotic disease. We measured serum lipids, lipoprotein levels, and collected plasma samples at baseline. Subjects were randomized to two weeks of therapy with atorvastatin, pravastatin, or rosuvastatin. Lipids and cytokine levels were measured after two weeks of statin treatment. Subjects were given a four-week statin-free period. At the end of the four-week statin-free period, venous blood was sampled again to determine if serum lipids returned to within 5% of their pre-statin levels. When lipid levels returned to baseline, subjects were again treated with the next statin in the randomization scheme. IL-12, IL-18, IL-18 binding protein, and IL-27 were measured at baseline and after each statin treatment to determine effects of statin treatment on their blood levels, and identify correlations with lipids and lipoproteins. Results. Therapy with statins revealed no significant change in the levels of IL-12, IL-18, IL-18 binding protein or IL-27 levels. We found that IL-18 levels positively correlate with total cholesterol levels (r (2) = 0.15, p < 0.03), but not HDL or LDL cholesterol. In contrast, IL-12 p40 levels inversely correlated with total cholesterol (r (2) = -0.17, p < 0.008), HDL cholesterol (r (2) = -0.22, p < 0.002), and apolipoprotein A1 (r (2) = -0.21, p < 0.002). Similarly, IL-18 binding protein levels inversely correlated with apolipoprotein A1 levels (r (2) = -0.13, p < 0.02). Conclusions. Our findings suggest that total cholesterol levels positively regulate IL-18, while HDL cholesterol and apolipoprotein A1 may reduce IL-12 p40 and IL-18 binding protein levels. Additional studies in a larger patient population are needed to confirm these findings, and verify mechanistically whether HDL cholesterol can directly suppress IL-12 p40 and IL-18 binding protein levels in human subjects.

4.
J Am Coll Cardiol ; 65(7): 684-97, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25677430

RESUMO

BACKGROUND: The time course and extent of recovery after revascularization of viable dysfunctional myocardium are variable. Although fibrosis is a major determinant, myocyte structural and molecular remodeling may also play important roles. OBJECTIVES: This study sought to determine whether persistent myocyte loss and/or irreversibility of protein changes that develop in hibernating myocardium have an impact on functional recovery in the absence of infarction. METHODS: Swine implanted with a chronic left anterior descending artery (LAD) stenosis to produce hibernating myocardium underwent percutaneous revascularization, with serial functional recovery evaluated for 1 month (n = 12). Myocardial tissue was evaluated to assess myocyte size, nuclear density, and proliferation indexes in comparison with those of normal animals and nonrevascularized controls. Proteomic analysis by 2-dimensional differential in-gel electrophoresis was used to determine the reversibility of molecular adaptations of hibernating myocytes. RESULTS: At 3 months, physiological features of hibernating myocardium were confirmed, with depressed LAD wall thickening and no significant infarction. Revascularization normalized LAD flow reserve, with no immediate change in LAD wall thickening. Regional LAD wall thickening slowly improved but remained depressed 1 month post-percutaneous coronary intervention. Surprisingly, revascularization was associated with histological evidence of myocytes re-entering the growth phase of the cell cycle and increases in the number of c-Kit(+) cells. Myocyte nuclear density returned to normal, whereas regional myocyte hypertrophy regressed. Proteomic analysis demonstrated heterogeneous effects of revascularization. Up-regulated stress and cytoskeletal proteins normalized, whereas reduced contractile and metabolic proteins persisted. CONCLUSIONS: Delayed recovery of hibernating myocardium in the absence of scar may reflect persistent reductions in the amounts of contractile and metabolic proteins. Although revascularization appeared to stimulate myocyte proliferation, the persistence of small immature myocytes may have contributed to delayed functional recovery.


Assuntos
Estenose Coronária/terapia , Revascularização Miocárdica , Miocárdio Atordoado/patologia , Miocárdio Atordoado/terapia , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Adaptação Fisiológica , Animais , Proliferação de Células , Doença Crônica , Proteínas Contráteis/metabolismo , Estenose Coronária/complicações , Estenose Coronária/patologia , Modelos Animais de Doenças , Miocárdio Atordoado/metabolismo , Miocárdio/metabolismo , Recuperação de Função Fisiológica , Suínos , Fatores de Tempo
5.
Clin Transl Med ; 3: 14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995121

RESUMO

BACKGROUND: Fractalkine (CX3CL1) promotes migration and adhesion of lymphocytes and monocytes to inflamed tissues. Prior studies show a role for CX3CL1 in atherosclerosis. The relationship between inflammatory cytokines, cholesterol, and CX3CL1 levels in human subjects without known coronary artery disease is not well characterized. The goal of our study was to assess baseline CX3CL1 levels, and after modulation of cholesterol levels by statins to determine if CX3CL1 is linked to cholesterol levels or inflammatory stimuli. METHODS: We performed a blinded, randomized hypothesis generating study in human subjects without known coronary artery disease treated sequentially with three statins of differing potencies. Fractalkine (CX3CL1), GM-CSF, VEGF-A, other chemokines, and lipid levels were measured. Mechanistic studies of CX3CL1 induction by LDL cholesterol and TNFα in cultured human endothelial cells were performed using real-time PCR. RESULTS: Therapy with statins reduced total and LDL cholesterol levels as expected. CX3CL1 levels were significantly reduced from no statin control levels (89.9 ± 18.5 pg/mL) after treatment with atorvastatin (60.0 ± 7.8 pg/mL), pravastatin (54.2 ± 7.0 pg/mL) and rosuvastatin (65.6 ± 7.3 pg/mL) (χ (2)(2) = 17.4, p ≤ 0.001). Cholesterol is not a known regulator of CX3CL1. We found GM-CSF (r(2) = 0.524; p < 0.005) and VEGF-A (r(2) = 0.4; p < 0.005) levels were highly and positively correlated with CX3CL1. Total (r(2) = 0.086) and LDL cholesterol (r(2) = 0.059) levels weakly correlated with CX3CL1 levels. Finally, we tested whether LDL cholesterol could induce CX3CL1, GM-CSF, and VEGF-A in human endothelial cells, versus TNFα. LDL cholesterol alone resulted in small, non-significant increases in CX3CL1 and GM-CSF, while TNFα resulted in > 10-fold induction. CONCLUSIONS: Our findings suggest that while statins suppress CX3CL1 levels, inflammatory cytokines may be the major regulator of CX3CL1 levels rather than cholesterol itself. Additional studies in a larger patient population are needed to confirm these findings, determine if CX3CL1 levels reflect inflammation levels, and potentially add to standard risk factors in prediction of atherosclerotic disease events.

6.
PLoS One ; 8(8): e73861, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991206

RESUMO

BACKGROUND: Hypercholesterolemia plays a critical role in atherosclerosis. CD34+ CD45dim Lineage- hematopoietic stem/progenitor cells (HSPCs) give rise to the inflammatory cells linked to atherosclerosis. In mice, high cholesterol levels mobilize HSPCs into the bloodstream, and promote their differentiation to granulocytes and monocytes. The objective of our study was to determine how cholesterol levels affect HSPC quantity in humans. METHODS: We performed a blinded, randomized hypothesis generating study in human subjects (n=12) treated sequentially with statins of differing potencies to vary lipid levels. CD34+ HSPC levels in blood were measured by flow cytometry. Hematopoietic colony forming assays confirmed the CD34+ population studied as HSPCs with multlineage differentiation potential. Mobilizing cytokine levels were measured by ELISA. RESULTS: The quantity of HSPCs was 0.15 ± 0.1% of buffy coat leukocytes. We found a weak, positive correlation between CD34+ HSPCs and both total and LDL cholesterol levels (r(2)=0.096, p < 0.025). Additionally, we tested whether cholesterol modulates CD34+ HSPCs through direct effects or on the levels of mobilizing cytokines. LDL cholesterol increased cell surface expression of CXCR4, G-CSFR affecting HSPC migration, and CD47 mediating protection from phagocytosis by immune cells. LDL cholesterol also increased proliferation of CD34+ HSPCs (28 ± 5.7%, n=6, p < 0.03). Finally, the HSPC mobilizing cytokine G-CSF (r(2)=0.0683, p < 0.05), and its upstream regulator IL-17 (r(2)=0.0891, p < 0.05) both correlated positively with LDL cholesterol, while SDF-1 levels were not significantly affected. CONCLUSIONS: Our findings support a model where LDL cholesterol levels positively correlate with CD34+ HSPC levels in humans through effects on the levels of G-CSF via IL-17 promoting mobilization of HSPCs, and by direct effects of LDL cholesterol on HSPC proliferation. The findings are provocative of further study to determine if HSPCs, like cholesterol levels, are linked to CVD events.


Assuntos
Antígenos CD34/imunologia , Proliferação de Células , LDL-Colesterol/fisiologia , Fator Estimulador de Colônias de Granulócitos/fisiologia , Células-Tronco Hematopoéticas/citologia , Interleucina-17/fisiologia , Adulto , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA