Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14523, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258581

RESUMO

PURPOSE: This study investigates the influence of gantry and collimator angles on the dosimetric leaf gap (DLG) and leaf transmission factor (LTF) in a Varian LINAC equipped with rounded-end multi-leaf collimators (MLCs). While Varian guidelines recommend DLG measurements at zero degrees for both gantry and collimator, this research aims to address the knowledge gap by assessing DLG and LTF variations at different gantry and collimator angles. METHODS: Measurements were conducted using a Varian TrueBeam LINAC with a Millennium 120-leaf MLC and Eclipse TPS version 16.1. The beams utilized in this study had energies of 6 MV, 10 MV, 6 FFF, and 10 FFF. LTF and DLG were determined using ionization chambers in solid water phantoms at various gantry angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). For each gantry angle, measurements were also taken at various collimator angles (0°, 45°, 90°, and 315°). Dosimetric impacts were evaluated through VMAT Picket Fence tests and patient-specific verification using portal dosimetry for 10 clinical VMAT plans. RESULTS: LTF values showed no significant variation across gantry and collimator angles. However, DLG values exhibited notable differences depending on the gantry angle and were independent of the collimator angle. The highest DLG value was observed at a gantry angle of 270 degrees, while the lowest was at 90 degrees. The AXB DLGAverage (averaging seven measurements of DLGs at different gantry angles) model demonstrated the best agreement between measured and calculated dose distributions, indicating the importance of considering averaged DLG values across multiple gantry angles for accurate dose calculations. CONCLUSION: Our study highlights the variability of DLG with gantry angle alterations, contrary to Varian guidelines recommending DLG measurements at zero gantry angle only. We advocate for utilizing an averaged DLG value from measurements across multiple gantry angles, as outlined in our methodology.

2.
J Xray Sci Technol ; 31(5): 1013-1033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393487

RESUMO

BACKGROUND: Accurate and fast dose calculation is crucial in modern radiation therapy. Four dose calculation algorithms (AAA, AXB, CCC, and MC) are available in Varian Eclipse and RaySearch Laboratories RayStation Treatment Planning Systems (TPSs). OBJECTIVES: This study aims to evaluate and compare dosimetric accuracy of the four dose calculation algorithms applying to homogeneous and heterogeneous media, VMAT plans (based on AAPM TG-119 test cases), and the surface and buildup regions. METHODS: The four algorithms are assessed in homogeneous (IAEA-TECDOCE 1540) and heterogeneous (IAEA-TECDOC 1583) media. Dosimetric evaluation accuracy for VMAT plans is then analyzed, along with the evaluation of the accuracy of algorithms applying to the surface and buildup regions. RESULTS: Tests conducted in homogeneous media revealed that all algorithms exhibit dose deviations within 5% for various conditions, with pass rates exceeding 95% based on recommended tolerances. Additionally, the tests conducted in heterogeneous media demonstrate high pass rates for all algorithms, with a 100% pass rate observed for 6 MV and mostly 100% pass rate for 15 MV, except for CCC, which achieves a pass rate of 94%. The results of gamma index pass rate (GIPR) for dose calculation algorithms in IMRT fields show that GIPR (3% /3 mm) for all four algorithms in all evaluated tests based on TG119, are greater than 97%. The results of the algorithm testing for the accuracy of superficial dose reveal variations in dose differences, ranging from -11.9% to 7.03% for 15 MV and -9.5% to 3.3% for 6 MV, respectively. It is noteworthy that the AXB and MC algorithms demonstrate relatively lower discrepancies compared to the other algorithms. CONCLUSIONS: This study shows that generally, two dose calculation algorithms (AXB and MC) that calculate dose in medium have better accuracy than other two dose calculation algorithms (CCC and AAA) that calculate dose to water.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Software , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Método de Monte Carlo
3.
Radiol Oncol ; 51(2): 160-168, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28740451

RESUMO

BACKGROUND: Omitting the placement of clips inside tumour bed during breast cancer surgery poses a challenge for delineation of lumpectomy cavity clinical target volume (CTVLC). We aimed to quantify inter-observer variation and accuracy for CT- and MRI-based segmentation of CTVLC in patients without clips. PATIENTS AND METHODS: CT- and MRI-simulator images of 12 breast cancer patients, treated by breast conserving surgery and radiotherapy, were included in this study. Five radiation oncologists recorded the cavity visualization score (CVS) and delineated CTVLC on both modalities. Expert-consensus (EC) contours were delineated by a senior radiation oncologist, respecting opinions of all observers. Inter-observer volumetric variation and generalized conformity index (CIgen) were calculated. Deviations from EC contour were quantified by the accuracy index (AI) and inter-delineation distances (IDD). RESULTS: Mean CVS was 3.88 +/- 0.99 and 3.05 +/- 1.07 for MRI and CT, respectively (p = 0.001). Mean volumes of CTVLC were similar: 154 +/- 26 cm3 on CT and 152 +/- 19 cm3 on MRI. Mean CIgen and AI were superior for MRI when compared with CT (CIgen: 0.74 +/- 0.07 vs. 0.67 +/- 0.12, p = 0.007; AI: 0.81 +/- 0.04 vs. 0.76 +/- 0.07; p = 0.004). CIgen and AI increased with increasing CVS. Mean IDD was 3 mm +/- 1.5 mm and 3.6 mm +/- 2.3 mm for MRI and CT, respectively (p = 0.017). CONCLUSIONS: When compared with CT, MRI improved visualization of post-lumpectomy changes, reduced interobserver variation and improved the accuracy of CTVLC contouring in patients without clips in the tumour bed. Further studies with bigger sample sizes are needed to confirm our findings.

4.
Phys Med ; 122: 103390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833878

RESUMO

PURPOSE: This study discusses the measurement of dose in clinical commissioning tests described in IAEA-TECDOC-1583. It explores the application of Monte Carlo (MC) modelled medium dependency correction factors (Kmed) for accurate dose measurement in bone and lung materials using the CIRS phantom. METHODS: BEAMnrc codes simulate radiation sources and model radiation transport for 6 MV and 15 MV photon beams. CT images of the CIRS phantom are converted to an MC compatible phantom. The PTW 30013 farmer chamber measures doses within modeled CIRS phantom. Kmed are determined by averaging values from four central voxels within the sensitive volume of the farmer chamber. Kmed is calculated for Dm.m and Dw.w algorithm types in bone and lung media for both photon beams. RESULTS: Average modelled correction factors for Dm.m calculations using the farmer chamber are 0.976 (±0.1 %) for 6 MV and 0.979 (±0.1 %) for 15 MV in bone media. Correspondingly, correction factors for Dw.w calculations are 0.99 (±0.3 %) and 0.992 (±0.4 %), respectively. For lung media, average correction factors for Dm.m calculations are 1.02 (±0.3 %) for 6 MV and 1.022 (±0.4 %) for 15 MV. Correspondingly, correction factors for Dw.w calculations are 1.01 (±0.3 %) and 1.012 (±0.2 %), respectively. CONCLUSIONS: This study highlights the significant impact of applying Kmed on dose differences between measurement and calculation during the dose audit process.


Assuntos
Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Osso e Ossos/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Radiometria/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA