Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2321611121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547058

RESUMO

Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates ß-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of ß-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA , Dioxigenases , Glioma , Proteínas Musculares , Humanos , 5-Metilcitosina/metabolismo , beta Catenina/metabolismo , Cromatina , Antígeno CD47/genética , RNA , Evasão da Resposta Imune , Glioma/patologia , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo , RNA Nuclear Pequeno , Microambiente Tumoral , Fatores de Processamento de RNA/genética , Proteínas Repressoras/metabolismo
2.
BMC Cancer ; 24(1): 854, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026146

RESUMO

BACKGROUND: Metabolic dysregulation is recognized as a significant hallmark of cancer progression. Although numerous studies have linked specific metabolic pathways to cancer incidence, the causal relationship between blood metabolites and lung cancer risk remains unclear. METHODS: Genomic data from 29,266 lung cancer patients and 56,450 control individuals from the Transdisciplinary Research in Cancer of the Lung and the International Lung Cancer Consortium (TRICL-ILCCO) were utilized, and findings were replicated using additional data from the FinnGen consortium. The analysis focused on the associations between 486 blood metabolites and the susceptibility to overall lung cancer and its three major clinical subtypes. Various Mendelian randomization methods, including inverse-variance weighting, weighted median estimation, and MR-Egger regression, were employed to ensure the robustness of our findings. RESULTS: A total of 19 blood metabolites were identified with significant associations with lung cancer risk. Specifically, oleate (OR per SD = 2.56, 95% CI: 1.51 to 4.36), 1-arachidonoylglyceropholine (OR = 1.79, 95% CI: 1.22 to 2.65), and arachidonate (OR = 1.67, 95% CI: 1.16 to 2.40) were associated with a higher risk of lung cancer. Conversely, 1-linoleoylglycerophosphoethanolamine (OR = 0.57, 95% CI: 0.40 to 0.82), ADpSGEGDFXAEGGGVR, a fibrinogen cleavage peptide (OR = 0.60, 95% CI: 0.47 to 0.77), and isovalerylcarnitine (OR = 0.62, 95% CI: 0.49 to 0.78) were associated with a lower risk of lung cancer. Notably, isoleucine (OR = 9.64, 95% CI: 2.55 to 36.38) was associated with a significantly higher risk of lung squamous cell cancer, while acetyl phosphate (OR = 0.11, 95% CI: 0.01 to 0.89) was associated with a significantly lower risk of small cell lung cancer. CONCLUSION: This study reveals the complex relationships between specific blood metabolites and lung cancer risk, highlighting their potential as biomarkers for lung cancer prevention, screening, and treatment. The findings not only deepen our understanding of the metabolic mechanisms of lung cancer but also provide new insights for future treatment strategies.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Feminino , Masculino , Análise da Randomização Mendeliana , Fatores de Risco , Predisposição Genética para Doença , Estudos de Casos e Controles , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
3.
Int Immunopharmacol ; 140: 112788, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39083923

RESUMO

The tumor microenvironment (TME) is intricately associated with cancer progression, characterized by dynamic interactions among various cellular and molecular components that significantly impact the carcinogenic process. Notably, neutrophils play a crucial dual role in regulating this complex environment. These cells oscillate between promoting and inhibiting tumor activity, responding to a multitude of cytokines, chemokines, and tumor-derived factors. This response modulates immune reactions and affects the proliferation, metastasis, and angiogenesis of cancer cells. A significant aspect of their influence is their interaction with the endoplasmic reticulum (ER) stress responses in cancer cells, markedly altering tumor immunodynamics by modulating the phenotypic plasticity and functionality of neutrophils. Furthermore, neutrophil extracellular traps (NETs) exert a pivotal influence in the progression of malignancies by enhancing inflammation, metastasis, immune suppression, and thrombosis, thereby exacerbating the disease. In the realm of immunotherapy, checkpoint inhibitors targeting PD-L1/PD-1 and CTLA-4 among others have underscored the significant role of neutrophils in enhancing therapeutic responses. Recent research has highlighted the potential of using neutrophils for targeted drug delivery through nanoparticle systems, which precisely control drug release and significantly enhance antitumor efficacy. This review thoroughly examines the diverse functions of neutrophils in cancer treatment, emphasizing their potential in regulating immune therapy responses and as drug delivery carriers, offering innovative perspectives and profound implications for the development of targeted diagnostic and therapeutic strategies in oncology.


Assuntos
Progressão da Doença , Imunoterapia , Neoplasias , Neutrófilos , Microambiente Tumoral , Humanos , Neutrófilos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Imunoterapia/métodos , Armadilhas Extracelulares/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico
4.
Thorac Cancer ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289835

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors, with high incidence and poor prognosis. Revealing mechanisms of ESCC progression and developing new therapeutic targets remains crucial. The aim of this study was to elucidate the molecular mechanism of miR-30c-5p in regulating the malignant progression of ESCC. METHODS: TCGA, GEO, and other datasets were used to analyze the differential expression of miR-30c-5p in ESCC and adjacent tissues, and its impact on prognosis. Then the effects of miR-30c-5p on the proliferation, migration, and invasion of TE-1 and Eca9706 cells were investigated through proliferation experiments, transwell and wounding healing assays. The regulatory mechanism of miR-30c-5p on the PI3K/AKT signaling pathway and its interaction in cancer progression were investigated through Western blots, dual-luciferase reporter assay, and rescue experiments. RESULTS: miR-30c-5p was significantly downregulated in ESCC tissue and represented a poor prognosis. miR-30c-5p mimic significantly inhibited the proliferation, migration, and invasion ability of ESCC, while miR-30c-5p inhibitor significantly promoted tumor cell progression. Through bioinformatic analysis and experimental results, miR-30c-5p interacted directly with PIK3CA mRNA and inhibited subsequent signaling pathway activation. PIK3CA activator could eliminate the inhibitory effects of miR-30c-5p mimic on the progression of ESCC, while PIK3CA inhibitors could rescue the promoting effect of miR-30c-5p inhibitor group cells. CONCLUSIONS: In summary, we found that miR-30c-5p inhibited the proliferation, invasion and migration of ESCC by inhibiting PI3K/AKT signaling pathway for the first time, and this study is expected to provide a novel insight and potential therapeutic target for managing ESCC.

5.
Thorac Cancer ; 14(33): 3247-3258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795778

RESUMO

The third most prevalent type of epidermal growth factor receptor (EGFR) mutation, EGFR exon 20 insertions (EGFRex20ins), involves 2%-12% of all cases of EGFR-positive non-small cell lung cancer (NSCLC). Approximately 90% of the mutations occur within the loop structure region, and the most frequently reported subtypes are A767_V769dup and S768_D770dup, which together account for almost 50% of instances. Apart from the unique subtype of A763_Y764insFQEA, NSCLCs with EGFRex20ins are resistant to approved EGFR tyrosine kinase inhibitors (TKIs) and are also insensitive to chemotherapy or immunotherapy. A new modality of treatment for NSCLC patients with EGFRx20ins has been established with the approval of mobocertinib and amivantamab. There are also numerous novel targeted treatments for NSCLC with EGFRex20ins in development, which are anticipated to improve this patient population's survival even further. This review provides a reference for the clinical management of these patients by summarizing the most recent epidemiological, and clinicopathological characteristics, diagnostic techniques, and therapeutic advances of EGFRex20ins in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Mutagênese Insercional , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Receptores ErbB , Éxons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA