Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1413777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045268

RESUMO

Background: Circulating metabolites, which play a crucial role in our health, have been reported to be disordered in basal cell carcinoma (BCC). Despite these findings, evidence is still lacking to determine whether these metabolites directly promote or prevent BCC's progression. Therefore, our study aims to examine the potential effects of circulating metabolites on BCC progression. Material and methods: We conducted a two-sample Mendelian randomization (MR) analysis using data from two separate genome-wide association studies (GWAS). The primary study included data for 123 blood metabolites from a GWAS with 25,000 Finnish individuals, while the secondary study had data for 249 blood metabolites from a GWAS with 114,000 UK Biobank participants.GWAS data for BCC were obtained from the UK Biobank for the primary analysis and the FinnGen consortium for the secondary analysis. Sensitivity analyses were performed to assess heterogeneity and pleiotropy. Results: In the primary analysis, significant causal relationships were found between six metabolic traits and BCC with the inverse variance weighted (IVW) method after multiple testing [P < 4 × 10-4 (0.05/123)]. Four metabolic traits were discovered to be significantly linked with BCC in the secondary analysis, with a significance level of P < 2 × 10-4 (0.05/249). We found that all the significant traits are linked to Polyunsaturated Fatty Acids (PUFAs) and their degree of unsaturation. Conclusion: Our research has revealed a direct link between the susceptibility of BCC and Polyunsaturated Fatty Acids and their degree of unsaturation. This discovery implies screening and prevention of BCC.


Assuntos
Carcinoma Basocelular , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/sangue , Carcinoma Basocelular/genética , Carcinoma Basocelular/epidemiologia , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Polimorfismo de Nucleotídeo Único , Feminino , Masculino , Predisposição Genética para Doença , Fatores de Risco , Finlândia/epidemiologia
2.
Heliyon ; 10(3): e24984, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333829

RESUMO

Objective: To study the role and mechanism of chloride channel-3 (ClC-3) in the formation of hypertrophic scar by constructing ClC-3 interference vectors and examining their effects on human hypertrophic scar fibroblasts (HSFB). Methods: Human HSFB and human normal skin fibroblasts (NSFB) were used in this study, and ClC-3 interference vectors were constructed to transfect cells. ClC-3 inhibitors NPPB and Tamoxifen were used to treat cells. Cell migration and the expression of TGF-ß/Smad, CollagenⅠ,CollagenⅢ were examined to explore the role of ClC-3 in the formation of hypertrophic scar. Results: Compared with the normal skin tissue, the positive expression of ClC-3 and TGF-ß in the scar tissue was significantly increased. The relative expression of ClC-3 and TGF-ß1 in HSFB cells was higher than that in NSFB cells. Interfering with the expression of CLC-3 can inhibit the migration of HSFB cells and the expression of TGF- ß/Smad, CollagenⅠ/Ⅲ. The experiment of HSFB cells treated by CLC-3 inhibitors can also obtain similar results. Conclusion: Inhibiting CLC-3 can reduce the formation of hypertrophic scars.

3.
Vet Sci ; 11(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668443

RESUMO

Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) play key roles in regulating testosterone secretion and spermatogenesis in male mammals, respectively, and they maintain the fertility of male animals by binding to their corresponding receptors. We designed and prepared a recombinant LH receptor (LHR) subunit vaccine and a recombinant FSH receptor (FSHR) subunit vaccine and used male Sprague Dawley (SD) rats as a model to examine their effects on testicular development, spermatogenesis, and testosterone secretion in prepubertal and pubertal mammals. Both vaccines (LHR-DTT and FSHR-DTT) significantly decreased the serum testosterone level in prepubertal rats (p < 0.05) but had no effect on the testosterone secretion in pubertal rats; both vaccines decreased the number of cell layers in the seminiferous tubules and reduced spermatogenesis in prepubertal and pubertal rats. Subunit vaccine FSHR-DTT decreased the sperm density in the epididymis in both prepubertal and pubertal rats (p < 0.01) and lowered testicular index and sperm motility in pubertal rats (p < 0.05), whereas LHR-DTT only reduced the sperm density in the epididymis in pubertal rats (p < 0.05). These results indicate that the FSHR subunit vaccine may be a promising approach for immunocastration, but it still needs improvements in effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA