Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1131-1146, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38598681

RESUMO

Despite the importance of proline conformational equilibria (trans versus cis amide and exo versus endo ring pucker) on protein structure and function, there is a lack of convenient ways to probe proline conformation. 4,4-Difluoroproline (Dfp) was identified to be a sensitive 19F NMR-based probe of proline conformational biases and cis-trans isomerism. Within model compounds and disordered peptides, the diastereotopic fluorines of Dfp exhibit similar chemical shifts (ΔδFF = 0-3 ppm) when a trans X-Dfp amide bond is present. In contrast, the diastereotopic fluorines exhibit a large (ΔδFF = 5-12 ppm) difference in chemical shift in a cis X-Dfp prolyl amide bond. DFT calculations, X-ray crystallography, and solid-state NMR spectroscopy indicated that ΔδFF directly reports on the relative preference of one proline ring pucker over the other: a fluorine which is pseudo-axial (i.e., the pro-4R-F in an exo ring pucker, or the pro-4S-F in an endo ring pucker) is downfield, while a fluorine which is pseudo-equatorial (i.e., pro-4S-F when exo, or pro-4R-F when endo) is upfield. Thus, when a proline is disordered (a mixture of exo and endo ring puckers, as at trans-Pro in peptides in water), it exhibits a small Δδ. In contrast, when the Pro is ordered (i.e., when one ring pucker is strongly preferred, as in cis-Pro amide bonds, where the endo ring pucker is strongly favored), a large Δδ is observed. Dfp can be used to identify inherent induced order in peptides and to quantify proline cis-trans isomerism. Using Dfp, we discovered that the stable polyproline II helix (PPII) formed in the denatured state (8 M urea) exhibits essentially equal populations of the exo and endo proline ring puckers. In addition, the data with Dfp suggested the specific stabilization of PPII by water over other polar solvents. These data strongly support the importance of carbonyl solvation and n → π* interactions for the stabilization of PPII. Dfp was also employed to quantify proline cis-trans isomerism as a function of phosphorylation and the R406W mutation in peptides derived from the intrinsically disordered protein tau. Dfp is minimally sterically disruptive and can be incorporated in expressed proteins, suggesting its broad application in understanding proline cis-trans isomerization, protein folding, and local order in intrinsically disordered proteins.


Assuntos
Flúor , Prolina , Prolina/química , Prolina/análogos & derivados , Flúor/química , Cristalografia por Raios X/métodos , Conformação Proteica , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Molecular
2.
Anal Chem ; 94(9): 3782-3790, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35191677

RESUMO

Temperature can affect many biological and chemical processes within a body. During in vivo measurements, varied temperature can impact the accurate quantification of additional abiotic factors such as oxygen. During magnetic resonance imaging (MRI) measurements, the temperature of the sample can increase with the absorption of radiofrequency energy, which needs to be well-regulated for thermal therapies and long exposure. To address this potentially confounding effect, temperature can be probed intentionally using reporter molecules to determine the temperature in vivo. This work describes a combined experimental and computational approach for the design of fluorinated molecular temperature sensors with the potential to improve the accuracy and sensitivity of 19F MRI-based temperature monitoring. These fluorinated sensors are being developed to overcome the temperature sensitivity and tissue limitations of the proton resonance frequency (10 × 10-3 ppm °C-1), a standard parameter used for temperature mapping in MRI. Here, we develop (perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis((heptadecafluorodecyl)sulfane), which has a nearly 2-fold increase in temperature responsiveness, compared to the proton resonance frequency and the 19F MRI temperature sensor perfluorotributylamine, when tested under identical NMR conditions. While 19F MRI is in the early stages of translation into clinical practice, development of alternative sensors with improved diagnostic abilities will help advance the development and incorporation of fluorine magnetic resonance techniques for clinical use.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Flúor/química , Espectroscopia de Ressonância Magnética , Enxofre , Temperatura
3.
Blood Cells Mol Dis ; 94: 102653, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35180460

RESUMO

Abnormal coagulation dynamics, including disseminated intravascular coagulopathy, pulmonary embolism, venous thromboembolism and risk of thrombosis are often associated with the severity of COVID-19. However, very little is known about the contribution of platelets in above pathogenesis. In order to decipher the pathophysiology of thrombophilia in COVID-19, we recruited severely ill patients from ICU, based on the above symptoms and higher D-dimer levels, and compared these parameters with their asymptomatic counterparts. Elevated levels of platelet-derived microparticles and platelet-leukocyte aggregates suggested the hyperactivation of platelets in ICU patients. Strikingly, platelet transcriptome analysis showed a greater association of IL-6 and TNF signalling pathways in ICU patients along with higher plasma levels of IL-6 and TNFα. In addition, upregulation of pathways like blood coagulation and hemostasis, as well as inflammation coexisted in platelets of these patients. Further, the increment of necrotic pathway and ROS-metabolic processes in platelets was suggestive of its procoagulant phenotype in ICU patients. This study suggests that higher plasma IL-6 and TNFα may trigger platelet activation and coagulation, and in turn aggravate thrombosis and hypercoagulation in severe COVID-19 patients. Therefore, the elevated IL-6 and TNFα, may serve as potential risk factors for platelet activation and thrombophilia in these patients.


Assuntos
COVID-19 , Micropartículas Derivadas de Células , Trombofilia , Plaquetas/metabolismo , COVID-19/complicações , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Humanos , SARS-CoV-2 , Trombofilia/complicações , Regulação para Cima
4.
Am J Obstet Gynecol ; 227(1): 74.e1-74.e16, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34942154

RESUMO

BACKGROUND: Among nonpregnant individuals, diabetes mellitus and high body mass index increase the risk of COVID-19 and its severity. OBJECTIVE: This study aimed to determine whether diabetes mellitus and high body mass index are risk factors for COVID-19 in pregnancy and whether gestational diabetes mellitus is associated with COVID-19 diagnosis. STUDY DESIGN: INTERCOVID was a multinational study conducted between March 2020 and February 2021 in 43 institutions from 18 countries, enrolling 2184 pregnant women aged ≥18 years; a total of 2071 women were included in the analyses. For each woman diagnosed with COVID-19, 2 nondiagnosed women delivering or initiating antenatal care at the same institution were also enrolled. The main exposures were preexisting diabetes mellitus, high body mass index (overweight or obesity was defined as a body mass index ≥25 kg/m2), and gestational diabetes mellitus in pregnancy. The main outcome was a confirmed diagnosis of COVID-19 based on a real-time polymerase chain reaction test, antigen test, antibody test, radiological pulmonary findings, or ≥2 predefined COVID-19 symptoms at any time during pregnancy or delivery. Relationships of exposures and COVID-19 diagnosis were assessed using generalized linear models with a Poisson distribution and log link function, with robust standard errors to account for model misspecification. Furthermore, we conducted sensitivity analyses: (1) restricted to those with a real-time polymerase chain reaction test or an antigen test in the last week of pregnancy, (2) restricted to those with a real-time polymerase chain reaction test or an antigen test during the entire pregnancy, (3) generating values for missing data using multiple imputation, and (4) analyses controlling for month of enrollment. In addition, among women who were diagnosed with COVID-19, we examined whether having gestational diabetes mellitus, diabetes mellitus, or high body mass index increased the risk of having symptomatic vs asymptomatic COVID-19. RESULTS: COVID-19 was associated with preexisting diabetes mellitus (risk ratio, 1.94; 95% confidence interval, 1.55-2.42), overweight or obesity (risk ratio, 1.20; 95% confidence interval, 1.06-1.37), and gestational diabetes mellitus (risk ratio, 1.21; 95% confidence interval, 0.99-1.46). The gestational diabetes mellitus association was specifically among women requiring insulin, whether they were of normal weight (risk ratio, 1.79; 95% confidence interval, 1.06-3.01) or overweight or obese (risk ratio, 1.77; 95% confidence interval, 1.28-2.45). A somewhat stronger association with COVID-19 diagnosis was observed among women with preexisting diabetes mellitus, whether they were of normal weight (risk ratio, 1.93; 95% confidence interval, 1.18-3.17) or overweight or obese (risk ratio, 2.32; 95% confidence interval, 1.82-2.97). When the sample was restricted to those with a real-time polymerase chain reaction test or an antigen test in the week before delivery or during the entire pregnancy, including missing variables using imputation or controlling for month of enrollment, the observed associations were comparable. CONCLUSION: Diabetes mellitus and overweight or obesity were risk factors for COVID-19 diagnosis in pregnancy, and insulin-dependent gestational diabetes mellitus was associated with the disease. Therefore, it is essential that women with these comorbidities are vaccinated.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Obesidade Materna , Adiposidade , Adolescente , Adulto , Índice de Massa Corporal , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Diabetes Mellitus Tipo 1/complicações , Diabetes Gestacional/prevenção & controle , Feminino , Humanos , Insulina/uso terapêutico , Obesidade/complicações , Sobrepeso/complicações , Gravidez , Resultado da Gravidez
5.
Biomacromolecules ; 23(9): 3822-3830, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35944154

RESUMO

The molecular origin of sickle cell disease (SCD) has been known since 1949, but treatments remain limited. We present the first high-throughput screening (HTS) platform for discovering small molecules that directly inhibit sickle hemoglobin (HbS) oligomerization and improve blood flow, potentially overcoming a long-standing bottleneck in SCD drug discovery. We show that at concentrations far below the threshold for nucleation and rapid polymerization, deoxygenated HbS forms small assemblies of multiple α2ß2 tetramers. Our HTS platform leverages high-sensitivity fluorescence lifetime measurements that monitor these temporally stable prefibrillar HbS oligomers. We show that this approach is sensitive to compounds that inhibit HbS polymerization with or without modulating hemoglobin oxygen binding affinity. We also report the results of a pilot small-molecule screen in which we discovered and validated several novel inhibitors of HbS oligomerization.


Assuntos
Anemia Falciforme , Hemoglobina Falciforme , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Descoberta de Drogas , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobinas , Humanos , Oxigênio/metabolismo
6.
Angew Chem Int Ed Engl ; 60(3): 1220-1226, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32975004

RESUMO

Bromodomain and extra-terminal (BET) family proteins, BRD2-4 and T, are important drug targets; however, the biological functions of each bromodomain remain ill-defined. Chemical probes that selectively inhibit a single BET bromodomain are lacking, although pan inhibitors of the first (D1), and second (D2), bromodomain are known. Here, we develop selective BET D1 inhibitors with preferred binding to BRD4 D1. In competitive inhibition assays, we show that our lead compound is 9-33 fold selective for BRD4 D1 over the other BET bromodomains. X-ray crystallography supports a role for the selectivity based on reorganization of a non-conserved lysine and displacement of an additional structured water in the BRD4 D1 binding site relative to our prior lead. Whereas pan-D1 inhibitors displace BRD4 from MYC enhancers, BRD4 D1 inhibition in MM.1S cells is insufficient for stopping Myc expression and may lead to its upregulation. Future analysis of BRD4 D1 gene regulation may shed light on differential BET bromodomain functions.


Assuntos
Proteínas/metabolismo , Água/química , Humanos , Fatores de Transcrição/química
7.
Chembiochem ; 20(7): 963-967, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548564

RESUMO

The preferred conformations of peptides and proteins are dependent on local interactions that bias the conformational ensemble. The n→π* interaction between consecutive carbonyls promotes compact conformations, including the α-helix and polyproline II helix. In order to further understand the n→π* interaction and to develop methods to promote defined conformational preferences through acyl N-capping motifs, a series of peptides was synthesized in which the electronic and steric properties of the acyl group were modified. Using NMR spectroscopy, van't Hoff analysis of enthalpies, X-ray crystallography, and computational investigations, we observed that more electron-rich donor carbonyls (pivaloyl, iso-butyryl, propionyl) promote stronger n→π* interactions and more compact conformations than acetyl or less electron-rich donor carbonyls (methoxyacetyl, fluoroacetyl, formyl). X-ray crystallography indicates a strong, electronically tunable preference for the α-helix conformation, as observed directly on the φ and ψ torsion angles. Electron-donating acyl groups promote the α-helical conformation, even in the absence of the hydrogen bonding that stabilizes the α-helix. In contrast, electron-withdrawing acyl groups led to more extended conformations. More sterically demanding groups can promote trans amide bonds independent of the electronic effect on n→π* interactions. Chloroacetyl groups additionally promote n→π* interactions through the interaction of the chlorine lone pair with the proximal carbonyl π*. These data provide additional support for an important role of n→π* interactions in the conformational ensemble of disordered or unfolded proteins. Moreover, this work suggests that readily incorporated acyl N-capping motifs that modulate n→π* interactions may be employed rationally to promote conformational biases in peptides, with potential applications in molecular design and medicinal chemistry.


Assuntos
Peptídeos/química , Teoria da Densidade Funcional , Modelos Químicos , Prolina/química , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Eletricidade Estática
8.
Org Biomol Chem ; 14(7): 2327-46, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26806113

RESUMO

Bioorthogonal reactions allow the introduction of new functionalities into peptides, proteins, and other biological molecules. The most readily accessible amino acids for bioorthogonal reactions have modest conformational preferences or bases for molecular interactions. Herein we describe the synthesis of 4 novel amino acids containing functional groups for bioorthogonal reactions. (2S,4R)- and (2S,4S)-iodophenyl ethers of hydroxyproline are capable of modification via rapid, specific Suzuki and Sonogashira reactions in water. The synthesis of these amino acids, as Boc-, Fmoc- and free amino acids, was achieved through succinct sequences. These amino acids exhibit well-defined conformational preferences, with the 4S-iodophenyl hydroxyproline crystallographically exhibiting ß-turn (ϕ, ψ∼-80°, 0°) or relatively extended (ϕ, ψ∼-80°, +170°) conformations, while the 4R-diastereomer prefers a more compact conformation (ϕ∼-60°). The aryloxyproline diastereomers present the aryl groups in a highly divergent manner, suggesting their stereospecific use in molecular design, medicinal chemistry, and catalysis. Thus, the 4R- and 4S-iodophenyl hydroxyprolines can be differentially applied in distinct structural contexts. The pentynoate ester of 4R-hydroxyproline introduces an alkyne functional group within an amino acid that prefers compact conformations. The propargyl thioether of 4-thiolphenylalanine was synthesized via copper-mediated cross-coupling reaction of thioacetic acid with protected 4-iodophenylalanine, followed by thiolysis and alkylation. This amino acid combines an alkyne functional group with an aromatic amino acid and the ability to tune aromatic and side chain properties via sulfur oxidation. These amino acids provide novel loci for peptide functionalization, with greater control of conformation possible than with other amino acids containing these functional groups.


Assuntos
Alanina/química , Hidroxiprolina/química , Iodo/química , Peptídeos/síntese química , Fenilacetatos/química , Cristalografia por Raios X , Ésteres do Ácido Fórmico , Hidroxiprolina/síntese química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Peptídeos/química
9.
Biochemistry ; 53(32): 5307-14, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25075447

RESUMO

Aromatic rings exhibit defined interactions via the unique aromatic π face. Aromatic amino acids interact favorably with proline residues via both the hydrophobic effect and aromatic-proline interactions, C-H/π interactions between the aromatic π face and proline ring C-H bonds. The canonical aromatic amino acids Trp, Tyr, and Phe strongly disfavor a polyproline helix (PPII) when they are present in proline-rich sequences because of the large populations of cis amide bonds induced by favorable aromatic-proline interactions (aromatic-cis-proline and proline-cis-proline-aromatic interactions). We demonstrate the ability to tune polyproline helix conformation and cis-trans isomerism in proline-rich sequences using aromatic electronic effects. Electron-rich aromatic residues strongly disfavor polyproline helix and exhibit large populations of cis amide bonds, while electron-poor aromatic residues exhibit small populations of cis amide bonds and favor polyproline helix. 4-Aminophenylalanine is a pH-dependent electronic switch of polyproline helix, with cis amide bonds favored as the electron-donating amine, but trans amide bonds and polyproline helix preferred as the electron-withdrawing ammonium. Peptides with block proline-aromatic PPXPPXPPXPP sequences exhibited electronically switchable pH-dependent structures. Electron-poor aromatic amino acids provide special capabilities to integrate aromatic residues into polyproline helices and to serve as the basis of aromatic electronic switches to change structure.


Assuntos
Peptídeos/química , Dicroísmo Circular , Isomerismo , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
10.
J Am Chem Soc ; 136(10): 3803-16, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24559475

RESUMO

Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer's disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174-251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196-209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean (3)JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects.


Assuntos
Acetilglucosamina/metabolismo , Fosfotreonina/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Acilação , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Fosfotreonina/química , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA