Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630725

RESUMO

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Assuntos
Mycobacterium abscessus , Humanos , Proteínas de Bactérias/genética , Lipopolissacarídeos/química , Mutação
2.
Proteins ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483037

RESUMO

The number of antibiotic resistant pathogens is increasing rapidly, and with this comes a substantial socioeconomic cost that threatens much of the world. To alleviate this problem, we must use antibiotics in a more responsible and informed way, further our understanding of the molecular basis of drug resistance, and design new antibiotics. Here, we focus on a key drug-resistant pathogen, Mycobacterium tuberculosis, and computationally analyze trends in drug-resistant mutations in genes of the proteins embA, embB, embC, and katG, which play essential roles in the action of the first-line drugs ethambutol and isoniazid. We use docking to predict binding modes of isoniazid to katG that agree with suggested binding sites found in our laboratory using cryo-EM. Using mutant stability predictions, we recapitulate the idea that resistance occurs when katG's heme cofactor is destabilized rather than due to a decrease in affinity to isoniazid. Conversely, we have identified resistance mutations that affect the affinity of ethambutol more drastically than the affinity of the natural substrate of embB. With this, we illustrate that we can distinguish between the two types of drug resistance-cofactor destabilization and drug affinity reduction-suggesting potential uses in the prediction of novel drug-resistant mutations.

3.
Nucleic Acids Res ; 48(D1): D314-D319, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31733063

RESUMO

Genome3D (https://www.genome3d.eu) is a freely available resource that provides consensus structural annotations for representative protein sequences taken from a selection of model organisms. Since the last NAR update in 2015, the method of data submission has been overhauled, with annotations now being 'pushed' to the database via an API. As a result, contributing groups are now able to manage their own structural annotations, making the resource more flexible and maintainable. The new submission protocol brings a number of additional benefits including: providing instant validation of data and avoiding the requirement to synchronise releases between resources. It also makes it possible to implement the submission of these structural annotations as an automated part of existing internal workflows. In turn, these improvements facilitate Genome3D being opened up to new prediction algorithms and groups. For the latest release of Genome3D (v2.1), the underlying dataset of sequences used as prediction targets has been updated using the latest reference proteomes available in UniProtKB. A number of new reference proteomes have also been added of particular interest to the wider scientific community: cow, pig, wheat and mycobacterium tuberculosis. These additions, along with improvements to the underlying predictions from contributing resources, has ensured that the number of annotations in Genome3D has nearly doubled since the last NAR update article. The new API has also been used to facilitate the dissemination of Genome3D data into InterPro, thereby widening the visibility of both the annotation data and annotation algorithms.


Assuntos
Proteínas/química , Bases de Dados de Proteínas , Proteínas/classificação , Proteínas/genética , Interface Usuário-Computador
4.
Nucleic Acids Res ; 47(D1): D490-D494, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30445555

RESUMO

Here, we present a major update to the SUPERFAMILY database and the webserver. We describe the addition of new SUPERFAMILY 2.0 profile HMM library containing a total of 27 623 HMMs. The database now includes Superfamily domain annotations for millions of protein sequences taken from the Universal Protein Recourse Knowledgebase (UniProtKB) and the National Center for Biotechnology Information (NCBI). This addition constitutes about 51 and 45 million distinct protein sequences obtained from UniProtKB and NCBI respectively. Currently, the database contains annotations for 63 244 and 102 151 complete genomes taken from UniProtKB and NCBI respectively. The current sequence collection and genome update is the biggest so far in the history of SUPERFAMILY updates. In order to the deal with the massive wealth of information, here we introduce a new SUPERFAMILY 2.0 webserver (http://supfam.org). Currently, the webserver mainly focuses on the search, retrieval and display of Superfamily annotation for the entire sequence and genome collection in the database.


Assuntos
Bases de Dados de Proteínas , Domínios Proteicos , Proteoma/química , Genoma , Internet , Cadeias de Markov , Domínios Proteicos/genética , Análise de Sequência de Proteína
5.
Nucleic Acids Res ; 45(W1): W229-W235, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28525590

RESUMO

Here, we report a webserver for the improved SDM, used for predicting the effects of mutations on protein stability. As a pioneering knowledge-based approach, SDM has been highlighted as the most appropriate method to use in combination with many other approaches. We have updated the environment-specific amino-acid substitution tables based on the current expanded PDB (a 5-fold increase in information), and introduced new residue-conformation and interaction parameters, including packing density and residue depth. The updated server has been extensively tested using a benchmark containing 2690 point mutations from 132 different protein structures. The revised method correlates well against the hypothetical reverse mutations, better than comparable methods built using machine-learning approaches, highlighting the strength of our knowledge-based approach for identifying stabilising mutations. Given a PDB file (a Protein Data Bank file format containing the 3D coordinates of the protein atoms), and a point mutation, the server calculates the stability difference score between the wildtype and mutant protein. The server is available at http://structure.bioc.cam.ac.uk/sdm2.


Assuntos
Mutação Puntual , Estabilidade Proteica , Software , Substituição de Aminoácidos , Internet , Termodinâmica
6.
Biochem Soc Trans ; 45(2): 303-311, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408471

RESUMO

For over four decades structural biology has been used to understand the mechanisms of disease, and structure-guided approaches have demonstrated clearly that they can contribute to many aspects of early drug discovery, both computationally and experimentally. Structure can also inform our understanding of impacts of mutations in human genetic diseases and drug resistance in cancers and infectious diseases. We discuss the ways that structural insights might be useful in both repurposing off-licence drugs and guide the design of new molecules that might be less susceptible to drug resistance in the future.


Assuntos
Descoberta de Drogas/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Mutação/efeitos dos fármacos , Reposicionamento de Medicamentos , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
7.
J Struct Biol ; 185(3): 427-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333899

RESUMO

Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and 6.1Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog - EV71 capsid - in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica/métodos , Enterovirus/ultraestrutura , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Software
8.
Bioinformatics ; 28(18): 2391-3, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796953

RESUMO

MOTIVATION: To better analyze low-resolution cryo electron microscopy maps of macromolecular assemblies, component atomic structures frequently have to be flexibly fitted into them. Reaching an optimal fit and preventing the fitting process from getting trapped in local minima can be significantly improved by identifying appropriate rigid bodies (RBs) in the fitted component. RESULTS: Here we present the RIBFIND server, a tool for identifying RBs in protein structures. The server identifies RBs in proteins by calculating spatial proximity between their secondary structural elements. AVAILABILITY: The RIBFIND web server and its standalone program are available at http://ribfind.ismb.lon.ac.uk. CONTACT: a.pandurangan@mail.cryst.bbk.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microscopia Crioeletrônica , Estrutura Secundária de Proteína , Software , Proteínas de Escherichia coli/química , Internet , Proteínas Periplásmicas de Ligação/química
9.
Comput Struct Biotechnol J ; 21: 1874-1884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915381

RESUMO

Multi-drug resistant tuberculosis is categorised by the World Health Organisation (WHO) as a public health crisis. In silico techniques were used to probe the structural basis of Mycobacterium tuberculosis resistance to isoniazid and streptomycin. Isoniazid resistance-associated mutations in InhA were predicted to reduce the binding affinity of NADH to InhA, without affecting INH-NAD (competitive-inhibitor) binding. Perturbation of the mutated residues was predicted (with the AlloSigMA server) to modulate the free energy of allosteric modulation of key binding site residues F41, F149, Y158 and W222. These results suggest that allosteric modulation of the protein structure may be key to the mechanism by which isoniazid resistance-associated mutations act. Mutations in the methyltransferase glucose-inhibited division gene B (GidB) are associated with streptomycin resistance. Molecular docking was carried out to predict the structure of the GidB bound to its substrate (s-adenosyl methionine). The effects of streptomycin resistance-associated mutations in GidB on protein stability and substrate binding were predicted (using SDM and mCSM-lig). All GidB mutants were predicted to disfavour SAM binding.

10.
Nat Commun ; 14(1): 7091, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925514

RESUMO

As observed in cancers, individual mutagens and defects in DNA repair create distinctive mutational signatures that combine to form context-specific spectra within cells. We reasoned that similar processes must occur in bacterial lineages, potentially allowing decomposition analysis to detect both disruption of DNA repair processes and exposure to niche-specific mutagens. Here we reconstruct mutational spectra for 84 clades from 31 diverse bacterial species and find distinct mutational patterns. We extract signatures driven by specific DNA repair defects using hypermutator lineages, and further deconvolute the spectra into multiple signatures operating within different clades. We show that these signatures are explained by both bacterial phylogeny and replication niche. By comparing mutational spectra of clades from different environmental and biological locations, we identify niche-associated mutational signatures, and then employ these signatures to infer the predominant replication niches for several clades where this was previously obscure. Our results show that mutational spectra may be associated with sites of bacterial replication when mutagen exposures differ, and can be used in these cases to infer transmission routes for established and emergent human bacterial pathogens.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Reparo do DNA/genética , Mutagênicos , Análise Mutacional de DNA/métodos
11.
Nat Commun ; 14(1): 919, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36808136

RESUMO

Cohort-wide sequencing studies have revealed that the largest category of variants is those deemed 'rare', even for the subset located in coding regions (99% of known coding variants are seen in less than 1% of the population. Associative methods give some understanding how rare genetic variants influence disease and organism-level phenotypes. But here we show that additional discoveries can be made through a knowledge-based approach using protein domains and ontologies (function and phenotype) that considers all coding variants regardless of allele frequency. We describe an ab initio, genetics-first method making molecular knowledge-based interpretations for exome-wide non-synonymous variants for phenotypes at the organism and cellular level. By using this reverse approach, we identify plausible genetic causes for developmental disorders that have eluded other established methods and present molecular hypotheses for the causal genetics of 40 phenotypes generated from a direct-to-consumer genotype cohort. This system offers a chance to extract further discovery from genetic data after standard tools have been applied.


Assuntos
Exoma , Predisposição Genética para Doença , Humanos , Fenótipo , Genótipo , Frequência do Gene
12.
Sci Adv ; 9(22): eadg2834, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256950

RESUMO

Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.


Assuntos
Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA , Humanos , Microscopia Crioeletrônica , DNA , Enzimas Reparadoras do DNA/genética
13.
J Struct Biol ; 177(2): 520-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22079400

RESUMO

We present RIBFIND, a method for detecting flexibility in protein structures via the clustering of secondary structural elements (SSEs) into rigid bodies. To test the usefulness of the method in refining atomic structures within cryoEM density we incorporated it into our flexible fitting protocol (Flex-EM). Our benchmark includes 13 pairs of protein structures in two conformations each, one of which is represented by a corresponding cryoEM map. Refining the structures in simulated and experimental maps at the 5-15Å resolution range using rigid bodies identified by RIBFIND shows a significant improvement over using individual SSEs as rigid bodies. For the 15Å resolution simulated maps, using RIBFIND-based rigid bodies improves the initial fits by 40.64% on average, as compared to 26.52% when using individual SSEs. Furthermore, for some test cases we show that at the sub-nanometer resolution range the fits can be further improved by applying a two-stage refinement protocol (using RIBFIND-based refinement followed by an SSE-based refinement). The method is stand-alone and could serve as a general interactive tool for guiding flexible fitting into EM maps.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas/química , Análise por Conglomerados , Interpretação Estatística de Dados , Simulação de Dinâmica Molecular , Conformação Proteica , Software
14.
Protein Sci ; 29(1): 247-257, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693276

RESUMO

Next-generation sequencing methods have not only allowed an understanding of genome sequence variation during the evolution of organisms but have also provided invaluable information about genetic variants in inherited disease and the emergence of resistance to drugs in cancers and infectious disease. A challenge is to distinguish mutations that are drivers of disease or drug resistance, from passengers that are neutral or even selectively advantageous to the organism. This requires an understanding of impacts of missense mutations in gene expression and regulation, and on the disruption of protein function by modulating protein stability or disturbing interactions with proteins, nucleic acids, small molecule ligands, and other biological molecules. Experimental approaches to understanding differences between wild-type and mutant proteins are most accurate but are also time-consuming and costly. Computational tools used to predict the impacts of mutations can provide useful information more quickly. Here, we focus on two widely used structure-based approaches, originally developed in the Blundell lab: site-directed mutator (SDM), a statistical approach to analyze amino acid substitutions, and mutation cutoff scanning matrix (mCSM), which uses graph-based signatures to represent the wild-type structural environment and machine learning to predict the effect of mutations on protein stability. Here, we describe DUET that uses machine learning to combine the two approaches. We discuss briefly the development of mCSM for understanding the impacts of mutations on interfaces with other proteins, nucleic acids, and ligands, and we exemplify the wide application of these approaches to understand human genetic disorders and drug resistance mutations relevant to cancer and mycobacterial infections. STATEMENT FOR A BROADER AUDIENCE: Genetic or somatic changes in genes can lead to mutations in human proteins, which give rise to genetic disorders or cancer, or to genes of pathogens leading to drug resistance. Computer software described here, using statistical approaches or machine learning, uses the information from genome sequencing of humans and pathogens, together with experimental or modeled 3D structures of gene products, the proteins, to predict impacts of mutations in genetic disease, cancer and drug resistance.


Assuntos
Biologia Computacional/métodos , Mutação , Proteínas/química , Proteínas/metabolismo , Resistência a Medicamentos , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas/genética , Análise de Sequência de DNA , Software
15.
Methods Mol Biol ; 2165: 27-67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621218

RESUMO

Genome3D consortium is a collaborative project involving protein structure prediction and annotation resources developed by six world-leading structural bioinformatics groups, based in the United Kingdom (namely Blundell, Murzin, Gough, Sternberg, Orengo, and Jones). The main objective of Genome3D serves as a common portal to provide both predicted models and annotations of proteins in model organisms, using several resources developed by these labs such as CATH-Gene3D, DOMSERF, pDomTHREADER, PHYRE, SUPERFAMILY, FUGUE/TOCATTA, and VIVACE. These resources primarily use SCOP- and/or CATH-based protein domain assignments. Another objective of Genome3D is to compare structural classifications of protein domains in CATH and SCOP databases and to provide a consensus mapping of CATH and SCOP protein superfamilies. CATH/SCOP mapping analyses led to the identification of total of 1429 consensus superfamilies.Currently, Genome3D provides structural annotations for ten model organisms, including Homo sapiens, Arabidopsis thaliana, Mus musculus, Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Plasmodium falciparum, Staphylococcus aureus, and Schizosaccharomyces pombe. Thus, Genome3D serves as a common gateway to each structure prediction/annotation resource and allows users to perform comparative assessment of the predictions. It, thus, assists researchers to broaden their perspective on structure/function predictions of their query protein of interest in selected model organisms.


Assuntos
Genômica/organização & administração , Bases de Conhecimento , Anotação de Sequência Molecular/métodos , Proteoma/química , Animais , Arabidopsis , Genoma , Genômica/métodos , Humanos , Disseminação de Informação , Alinhamento de Sequência/métodos , Reino Unido , Leveduras
17.
Structure ; 23(12): 2365-2376, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655474

RESUMO

We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3-8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2-23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information.


Assuntos
Genótipo , Multimerização Proteica , Software , Algoritmos , Sequência de Aminoácidos , Dados de Sequência Molecular , Dobramento de Proteína
18.
J Appl Crystallogr ; 48(Pt 4): 1314-1323, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306092

RESUMO

Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed. TEMPy (template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature of TEMPy helps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.

19.
Structure ; 21(9): 1500-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24010709

RESUMO

A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques-mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.


Assuntos
Modelos Moleculares , Complexos Multiproteicos/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Conformação Proteica , Espectrometria de Massas em Tandem
20.
Structure ; 21(8): 1396-405, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23850455

RESUMO

Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion.


Assuntos
Herpesvirus Humano 1/ultraestrutura , Proteínas do Envelope Viral/química , Células Cultivadas , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA