Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 57(24): 15305-15313, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30516362

RESUMO

Solid solutions of tungsten diboride (WB2) with increasing substitution of tungsten (W) by tantalum (Ta) and niobium (Nb)-ranging from 0 to 50 at. % on a metals basis-were synthesized through resistive arc melting. Samples were characterized using a combination of powder X-ray diffraction (PXRD) for phase identification, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy for elemental composition, Vickers microindentation for hardness measurements, and thermogravimetric analysis for thermal stability. The solubility limit was found to be less than 8 at. % for Nb and less than 10 at. % for Ta, as determined by PXRD. Vickers hardness ( Hv) values were measured to be 40.3 ± 1.6 and 41.0 ± 1.2 GPa at 0.49 N for 6 at. % Nb and for 8 at. % Ta substitution, respectively. In addition, the hardest solid solution (W0.92Ta0.08B2) showed oxidation resistance up to ∼570 °C, approximately 70 °C higher than that of tungsten carbide (WC). Although pure WB2 is known not to be superhard, these results demonstrate the formation of superhard solid solutions through the substitution of tungsten by small amounts of transition metals. This increase in hardness can be attributed to solid solution hardening.

2.
J Am Chem Soc ; 139(47): 17120-17127, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29140089

RESUMO

Tungsten tetraboride is an inexpensive, superhard material easily prepared at ambient pressure. Unfortunately, there are relatively few compounds in existence that crystallize in the same structure as tungsten tetraboride. Furthermore, the lack of data in the tetraboride phase space limits the discovery of any new superhard compounds that also possess high incompressibility and a three-dimensional boron network that withstands shear. Thus, the focus of the work here is to chemically probe the range of thermodynamically stable tetraboride compounds with respect to both the transition metal and the boron content. Tungsten tetraboride alloys with a variable concentration of boron were prepared by arc-melting and investigated for their mechanical properties and thermal stability. The purity and phase composition were confirmed by energy dispersive X-ray spectroscopy and powder X-ray diffraction. For variable boron WBx, it was found that samples prepared with a metal to boron ratio of 1:11.6 to 1:9 have similar hardness values (∼40 GPa at 0.49 N loading) as well as having a similar thermal oxidation temperature of ∼455 °C. A nearly single phase compound was successfully stabilized with tantalum and prepared with a nearly stoichiometric amount of boron (4.5) as W0.668Ta0.332B4.5. Therefore, the cost of production of WB4 can be decreased while maintaining its remarkable properties. Insights from this work will help design future compounds stable in the adaptable tungsten tetraboride structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA