Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256190

RESUMO

Liver transplantation is the most effective treatment for end-stage liver disease. Transplant indications have been progressively increasing, with a huge discrepancy between the supply and demand of optimal organs. In this context, the use of extended criteria donor grafts has gained importance, even though these grafts are more susceptible to ischemic reperfusion injury (IRI). Hepatic IRI is an inherent and inevitable consequence of all liver transplants; it involves ischemia-mediated cellular damage exacerbated upon reperfusion and its severity directly affects graft function and post-transplant complications. Strategies for organ preservation have been constantly improving since they first emerged. The current gold standard for preservation is perfusion solutions and static cold storage. However, novel approaches that allow extended preservation times, organ evaluation, and their treatment, which could increase the number of viable organs for transplantation, are currently under investigation. This review discusses the mechanisms associated with IRI, describes existing strategies for liver preservation, and emphasizes novel developments and challenges for effective organ preservation and optimization.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Perfusão , Reperfusão , Criopreservação
2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445954

RESUMO

Intestinal ischemia-reperfusion injury (IRI) is a common clinical entity, and its outcome is unpredictable due to the triad of inflammation, increased permeability and bacterial translocation. Polyethylene glycol (PEG) is a polyether compound that is extensively used in pharmacology as an excipient in various products. More recently, this class of products have shown to have potent anti-inflammatory, anti-apoptotic, immunosuppressive and cell-membrane-stabilizing properties. However, its effects on the outcome after intestinal IRI have not yet been investigated. We hypothesized that PEG administration would reduce the effects of intestinal IRI in rodents. In a previously described rat model of severe IRI (45 min of ischemia followed by 60 min of reperfusion), we evaluated the effect of IV PEG administration at different doses (50 and 100 mg/kg) before and after the onset of ischemia. In comparison to control animals, PEG administration stabilized the endothelial glycocalyx, leading to reduced reperfusion edema, bacterial translocation and inflammatory reaction as well as improved 7-day survival. These effects were seen both in a pretreatment and in a treatment setting. The fact that this product is readily available and safe should encourage further clinical investigations in settings of intestinal IRI, organ preservation and transplantation.


Assuntos
Traumatismo por Reperfusão , Roedores , Ratos , Animais , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Intestinos , Preservação de Órgãos
3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293465

RESUMO

The scarcity of livers for transplantation is rising, and new strategies to extend the donor pool are being explored. One solution is to use marginal grafts from extended criteria donors, presenting, for example, liver steatosis. As current preservation solutions (UW, HTK, and IGL-1) were mainly designed for static cold storage (SCS) only, IGL-2, a modified version of IGL-1, was developed to be suitable for SCS and dynamic preservation, such as hypothermic oxygenated perfusion (HOPE). In this study, we investigated the combined effect of IGL-2, SCS, and HOPE and compared it to the most used preservation solution (UW and Belzer MPS). Four experimental groups with six rats each were designed using Zucker rats. All groups underwent 24 h of SCS (in IGL-2 or UW) + 2 h of normothermic machine perfusion (NMP) at 37 °C to mimic transplantation. HOPE (IGL-2 or Belzer MPS) was performed before NMP on half of the rats. The IGL-2 group demonstrated lower transaminases and a significantly low level of glycocalyx proteins, CASP3, and HMGB1 in the perfusates. These data suggest the protective role of IGL-2 for fatty livers in preserving the endothelial glycocalyx, apoptosis, and inflammation.


Assuntos
Fígado Gorduroso , Proteína HMGB1 , Soluções para Preservação de Órgãos , Ratos , Animais , Preservação de Órgãos , Soluções para Preservação de Órgãos/farmacologia , Soluções para Preservação de Órgãos/metabolismo , Proteína HMGB1/metabolismo , Caspase 3/metabolismo , Ratos Zucker , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Transaminases/metabolismo , Perfusão
4.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628554

RESUMO

Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.


Assuntos
Fígado , Preservação de Órgãos , Aldeído-Desidrogenase Mitocondrial , Humanos , Fígado/fisiologia , Transplante de Fígado , Preservação de Órgãos/métodos , Oxigênio , Perfusão/métodos , Succinatos , Transplantes
5.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163080

RESUMO

Pharmacological conditioning is a protective strategy against ischemia/reperfusion injury, which occurs during liver resection and transplantation. Polyethylene glycols have shown multiple benefits in cell and organ preservation, including antioxidant capacity, edema prevention and membrane stabilization. Recently, polyethylene glycol 35 kDa (PEG35) preconditioning resulted in decreased hepatic injury and protected the mitochondria in a rat model of cold ischemia. Thus, the study aimed to decipher the mechanisms underlying PEG35 preconditioning-induced protection against ischemia/reperfusion injury. A hypoxia/reoxygenation model using HepG2 cells was established to evaluate the effects of PEG35 preconditioning. Several parameters were assessed, including cell viability, mitochondrial membrane potential, ROS production, ATP levels, protein content and gene expression to investigate autophagy, mitochondrial biogenesis and dynamics. PEG35 preconditioning preserved the mitochondrial function by decreasing the excessive production of ROS and subsequent ATP depletion, as well as by recovering the membrane potential. Furthermore, PEG35 increased levels of autophagy-related proteins and the expression of genes involved in mitochondrial biogenesis and fusion. In conclusion, PEG35 preconditioning effectively ameliorates hepatic hypoxia/reoxygenation injury through the enhancement of autophagy and mitochondrial quality control. Therefore, PEG35 could be useful as a potential pharmacological tool for attenuating hepatic ischemia/reperfusion injury in clinical practice.


Assuntos
Hipóxia/fisiopatologia , Precondicionamento Isquêmico/métodos , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Autofagia , Humanos , Fígado/patologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
6.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445250

RESUMO

The combined impact of an increasing demand for liver transplantation and a growing incidence of nonalcoholic liver disease has provided the impetus for the development of innovative strategies to preserve steatotic livers. A natural oxygen carrier, HEMO2life®, which contains M101 that is extracted from a marine invertebrate, has been used for static cold storage (SCS) and has shown superior results in organ preservation. A total of 36 livers were procured from obese Zucker rats and randomly divided into three groups, i.e., control, SCS-24H and SCS-24H + M101 (M101 at 1 g/L), mimicking the gold standard of organ preservation. Ex situ machine perfusion for 2 h was used to evaluate the quality of the livers. Perfusates were sampled for functional assessment, biochemical analysis and subsequent biopsies were performed for assessment of ischemia-reperfusion markers. Transaminases, GDH and lactate levels at the end of reperfusion were significantly lower in the group preserved with M101 (p < 0.05). Protection from reactive oxygen species (low MDA and higher production of NO2-NO3) and less inflammation (HMGB1) were also observed in this group (p < 0.05). Bcl-1 and caspase-3 were higher in the SCS-24H group (p < 0.05) and presented more histological damage than those preserved with HEMO2life®. These data demonstrate, for the first time, that the addition of HEMO2life® to the preservation solution significantly protects steatotic livers during SCS by decreasing reperfusion injury and improving graft function.


Assuntos
Fígado Gorduroso/metabolismo , Hemoglobinas/farmacologia , Fígado/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Caspase 3/metabolismo , Ciclina D1/metabolismo , Fígado Gorduroso/patologia , Proteína HMGB1/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratos , Ratos Zucker , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transaminases/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069402

RESUMO

The total damage inflicted on the liver before transplantation is associated with several surgical manipulations, such as organ recovery, washout of the graft, cold conservation in organ preservation solutions (UW, Celsior, HTK, IGL-1), and rinsing of the organ before implantation. Polyethylene glycol 35 (PEG35) is the oncotic agent present in the IGL-1 solution, which is an alternative to UW and Celsior solutions in liver clinical transplantation. In a model of cold preservation in rats (4 °C; 24 h), we evaluated the effects induced by PEG35 on detoxifying enzymes and nitric oxide, comparing IGL-1 to IGL-0 (which is the same as IGL-1 without PEG). The benefits were also assessed in a new IGL-2 solution characterized by increased concentrations of PEG35 (from 1 g/L to 5 g/L) and glutathione (from 3 mmol/L to 9 mmol/L) compared to IGL-1. We demonstrated that PEG35 promoted the mitochondrial enzyme ALDH2, and in combination with glutathione, prevented the formation of toxic aldehyde adducts (measured as 4-hydroxynonenal) and oxidized proteins (AOPP). In addition, PEG35 promoted the vasodilator factor nitric oxide, which may improve the microcirculatory disturbances in steatotic grafts during preservation and revascularization. All of these results lead to a reduction in damage inflicted on the fatty liver graft during the cold storage preservation. In this communication, we report on the benefits of IGL-2 in hypothermic static preservation, which has already been proved to confer benefits in hypothermic oxygenated dynamic preservation. Hence, the data reported here reinforce the fact that IGL-2 is a suitable alternative to be used as a unique solution/perfusate when hypothermic static and preservation strategies are used, either separately or combined, easing the logistics and avoiding the mixture of different solutions/perfusates, especially when fatty liver grafts are used. Further research regarding new therapeutic and pharmacological insights is needed to explore the underlying mitochondrial mechanisms exerted by PEG35 in static and dynamic graft preservation strategies for clinical liver transplantation purposes.


Assuntos
Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Polietilenoglicóis/farmacologia , Alanina Transaminase/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Criopreservação/métodos , Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Fígado/citologia , Masculino , Microcirculação/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Soluções para Preservação de Órgãos/farmacologia , Ratos , Ratos Zucker , Manejo de Espécimes/métodos
8.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751171

RESUMO

The discovery of inflammasomes has enriched our knowledge in the pathogenesis of multiple inflammatory diseases. The NLR pyrin domain-containing protein 3 (NLRP3) has emerged as the most versatile and well-characterized inflammasome, consisting of an intracellular multi-protein complex that acts as a central driver of inflammation. Its activation depends on a tightly regulated two-step process, which includes a wide variety of unrelated stimuli. It is therefore not surprising that the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Inflammasome-mediated inflammation has become increasingly important in acute pancreatitis, an inflammatory disorder of the pancreas that is one of the fatal diseases of the gastrointestinal tract. This review presents an update on the progress of research into the contribution of the NLRP3 inflammasome to acute pancreatic injury, examining the mechanisms of NLRP3 activation by multiple signaling events, the downstream interleukin 1 family of cytokines involved and the current state of the literature on NLRP3 inflammasome-specific inhibitors.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pâncreas/imunologia , Pancreatite/genética , Animais , Regulação da Expressão Gênica , Glibureto/uso terapêutico , Humanos , Indometacina/uso terapêutico , Inflamassomos/imunologia , Inflamassomos/metabolismo , Inflamação , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Pancreatite/patologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Vitanolídeos/uso terapêutico
10.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019239

RESUMO

Acute pancreatitis is an inflammatory disorder of the pancreas. Its presentation ranges from self-limiting disease to acute necrotizing pancreatitis (ANP) with multiorgan failure and a high mortality. Polyethylene glycols (PEGs) are non-immunogenic, non-toxic, and water-soluble chemicals composed of repeating units of ethylene glycol. The present article explores the effect of PEG35 administration on reducing the severity of ANP and associated lung injury. ANP was induced by injection of 5% sodium taurocholate into the biliopancreatic duct. PEG35 was administered intravenously either prophylactically or therapeutically. Three hours after ANP induction, pancreas and lung tissue samples and blood were collected and ANP severity was assessed. To evaluate the inflammatory response, gene expression of pro-inflammatory cytokines and chemokine and the changes in the presence of myeloperoxidase and adhesion molecule levels were determined in both the pancreas and the lung. To evaluate cell death, lactate dehydrogenase (LDH) activity and apoptotic cleaved caspase-3 localization were determined in plasma and in both the pancreatic and lung tissue respectively. ANP-associated local and systemic inflammatory processes were reduced when PEG35 was administered prophylactically. PEG35 pre-treatment also protected against acute pancreatitis-associated cell death. Notably, the therapeutic administration of PEG35 significantly decreased associated lung injury, even when the pancreatic lesion was equivalent to that in the untreated ANP-induced group. Our results support a protective role of PEG35 against the ANP-associated inflammatory process and identify PEG35 as a promising tool for the treatment of the potentially lethal complications of the disease.


Assuntos
Inflamação/prevenção & controle , Lesão Pulmonar/tratamento farmacológico , Pancreatite Necrosante Aguda/tratamento farmacológico , Polietilenoglicóis/farmacologia , Ácido Taurocólico/toxicidade , Animais , Colagogos e Coleréticos/toxicidade , Inflamação/etiologia , Inflamação/patologia , Interleucina-6/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/patologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784882

RESUMO

Organ transplantation is a multifactorial process in which proper graft preservation is a mandatory step for the success of the transplantation. Hypothermic preservation of abdominal organs is mostly based on the use of several commercial solutions, including UW, Celsior, HTK and IGL-1. The presence of the oncotic agents HES (in UW) and PEG35 (in IGL-1) characterize both solution compositions, while HTK and Celsior do not contain any type of oncotic agent. Polyethylene glycols (PEGs) are non-immunogenic, non-toxic and water-soluble polymers, which present a combination of properties of particular interest in the clinical context of ischemia-reperfusion injury (IRI): they limit edema and nitric oxide induction and modulate immunogenicity. Besides static cold storage (SCS), there are other strategies to preserve the organ, such as the use of machine perfusion (MP) in dynamic preservation strategies, which increase graft function and survival as compared to the conventional static hypothermic preservation. Here we report some considerations about using PEG35 as a component of perfusates for MP strategies (such as hypothermic oxygenated perfusion, HOPE) and its benefits for liver graft preservation. Improved liver preservation is closely related to mitochondria integrity, making this organelle a good target to increase graft viability, especially in marginal organs (e.g., steatotic livers). The final goal is to increase the pool of suitable organs, and thereby shorten patient waiting lists, a crucial problem in liver transplantation.


Assuntos
Glicocálix/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos/métodos , Perfusão/métodos , Polietilenoglicóis/farmacologia , Animais , Glicocálix/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/fisiologia , Transplante de Fígado/métodos , Mitocôndrias/metabolismo
13.
Int J Mol Sci ; 19(8)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103565

RESUMO

Improving the protection of marginal liver grafts during static cold storage is a major hurdle to increase the donor pool of organs. The endothelium glycocalyx quality of preservation influences future inflammatory and oxidative responses. One cellular pathway responsible for the formation of nitric oxide by endothelial cells is dependent on the stimulation of proteoglycans present in the glycocalyx. We investigated the impact of the glycocalyx preservation in static cold storage of fatty liver preserved in different preservation solutions on the endothelium-mediated production of NO. Zucker fatty rat livers were preserved 24 h in static cold storage in either Institut Georges Lopez-1 (IGL-1) (n = 10), IGL-0 (i.e., without PEG35) (n = 5) or Histidine-Tryptophan-Ketoglutarate (HTK) (n = 10) preservation solutions before being processed for analysis. For Sham group (n = 5), the fatty livers were immediately analyzed after procurement. The level of transaminases and nitrites/nitrates were measured in the washing perfusate. Glycocalyx proteins expressions, Syndecan-1, glypican-1 and heparan sulfate (HS), were determined in the tissue (ELISA). Steatotic livers preserved 24 h in IGL-1 preservation solution have a significant lower level of transaminases (aspartate aminotransferase (AST), alanine aminotransferase (ALT)) and less histological damages than steatotic livers preserved 24 h with HTK (p = 0.0152). The syndecan-1 is significantly better preserved in IGL-1 group compared to HTK (p < 0.0001) and we observed the same tendency compared to IGL-0. No significant differences were observed with glypican-1. HS expression in HTK group was significantly higher compared to the three other groups. HS level in IGL-1 was even lower than IGL-0 (p = 0.0005) which was similar to Sham group. The better protection of the glycocalyx proteins in IGL-1 group was correlated with a higher production of NO than HTK (p = 0.0055) or IGL-0 (p = 0.0433). IGL-1 protective mechanisms through the formation of NO could be due to its better protective effects on the glycocalyx during SCS compared to other preservation solutions. This beneficial effect could involve the preservation state of syndecan-1 and the internalization of HS.


Assuntos
Temperatura Baixa , Fígado Gorduroso/metabolismo , Glicocálix/metabolismo , Isquemia/metabolismo , Óxido Nítrico/metabolismo , Preservação de Órgãos , Polietilenoglicóis/farmacologia , Animais , Fígado Gorduroso/patologia , Isquemia/patologia , Ratos , Ratos Zucker
14.
Int J Mol Sci ; 19(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131474

RESUMO

Institut George Lopez-1 (IGL-1) and Histidine-tryptophan-ketoglutarate (HTK) solutions are proposed as alternatives to UW (gold standard) in liver preservation. Their composition differs in terms of the presence/absence of oncotic agents such as HES or PEG, and is decisive for graft conservation before transplantation. This is especially so when fatty (steatotic) livers are used since these grafts are more vulnerable to ischemia insult during conservation. Their composition determines the extent of the subsequent reperfusion injury after transplantation. Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, has been reported to play a protective role in warm ischemia-reperfusion injury (IRI), but its potential in fatty liver cold ischemic injury has not yet been investigated. We evaluated the relevance of ALDH2 activity in cold ischemia injury when fatty liver grafts from Zucker Obese rats were preserved in UW, HTK, and IGL-1 solutions, in order to study the mechanisms involved. ALDH2 upregulation was highest in livers preserved in IGL-1. It was accompanied by a decrease in transaminases, apoptosis (Caspase 3 and TUNEL assay), and lipoperoxidation, which was concomitant with the effective clearance of toxic aldehydes such as 4-hydroxy-nonenal. Variations in ATP levels were also determined. The results were consistent with levels of NF-E2 p45-related factor 2 (Nrf2), an antioxidant factor. Here we report for the first time the relevance of mitochondrial ALDH2 in fatty liver cold preservation and suggest that ALDH2 could be considered a potential therapeutic target or regulator in clinical transplantation.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Isquemia Fria , Fígado Gorduroso/metabolismo , Animais , Apoptose , Biomarcadores , Criopreservação , Fígado Gorduroso/patologia , Transplante de Fígado , Mitocôndrias/metabolismo , Preservação de Órgãos , Soluções para Preservação de Órgãos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Fatores de Tempo
15.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364854

RESUMO

Institute Goeorges Lopez 1 (IGL-1) and Histidine-Tryptophan-Ketoglutarate (HTK) preservation solutions are regularly used in clinical for liver transplantation besides University of Wisconsin (UW) solution and Celsior. Several clinical trials and experimental works have been carried out comparing all the solutions, however the comparative IGL-1 and HTK appraisals are poor; especially when they deal with the underlying protection mechanisms of the fatty liver graft during cold storage. Fatty livers from male obese Zücker rats were conserved for 24 h at 4 °C in IGL-1 or HTK preservation solutions. After organ recovery and rinsing of fatty liver grafts with Ringer Lactate solution, we measured the changes in mechanistic target of rapamycin (mTOR) signaling activation, liver autophagy markers (Beclin-1, Beclin-2, LC3B and ATG7) and apoptotic markers (caspase 3, caspase 9 and TUNEL). These determinations were correlated with the prevention of liver injury (aspartate and alanine aminostransferase (AST/ALT), histology) and mitochondrial damage (glutamate dehydrogenase (GLDH) and confocal microscopy findings). Liver grafts preserved in IGL-1 solution showed a marked reduction on p-TOR/mTOR ratio when compared to HTK. This was concomitant with significant increased cyto-protective autophagy and prevention of liver apoptosis, including inflammatory cytokines such as HMGB1. Together, our results revealed that IGL-1 preservation solution better protected fatty liver grafts against cold ischemia damage than HTK solution. IGL-1 protection was associated with a reduced liver damage, higher induced autophagy and decreased apoptosis. All these effects would contribute to limit the subsequent extension of reperfusion injury after graft revascularization in liver transplantation procedures.


Assuntos
Isquemia Fria , Citoproteção , Fígado Gorduroso/metabolismo , Preservação de Órgãos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores , Isquemia Fria/efeitos adversos , Isquemia Fria/métodos , Criopreservação , Fígado Gorduroso/patologia , Expressão Gênica , Glucose , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Histocitoquímica , Testes de Função Hepática , Transplante de Fígado/métodos , Masculino , Manitol , Microscopia Confocal , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Preservação de Órgãos/métodos , Soluções para Preservação de Órgãos , Fosforilação , Cloreto de Potássio , Procaína , Ratos , Serina-Treonina Quinases TOR/metabolismo
17.
Int J Mol Sci ; 18(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088097

RESUMO

The 26S proteasome is the central proteolytic machinery of the ubiquitin proteasome system (UPS), which is involved in the degradation of ubiquitinated protein substrates. Recently, UPS inhibition has been shown to be a key factor in fatty liver graft preservation during organ cold storage using University of Wisconsin solution (UW) and Institute Georges Lopez (IGL-1) solutions. However, the merits of IGL-1 and histidine-tryptophan-ketoglutarate (HTK) solutions for fatty liver preservation have not been compared. Fatty liver grafts from obese Zücker rats were preserved for 24 h at 4 °C. Aspartate aminotransferase and alanine aminotransferase (AST/ALT), glutamate dehydrogenase (GLDH), ATP, adenosine monophosphate protein kinase (AMPK), e-NOS, proteasome activity and liver polyubiquitinated proteins were determined. IGL-1 solution prevented ATP breakdown during cold-storage preservation of steatotic livers to a greater extent than HTK solution. There were concomitant increases in AMPK activation, e-NOS (endothelial NOS (NO synthase)) expression and UPS inhibition. UPS activity is closely related to the composition of the solution used to preserve the organ. IGL-1 solution provided significantly better protection against ischemia-reperfusion for cold-stored fatty liver grafts than HTK solution. The effect is exerted through the activation of the protective AMPK signaling pathway, an increase in e-NOS expression and a dysregulation of the UPS.


Assuntos
Fígado/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Fígado Gorduroso/cirurgia , Glucose/farmacologia , Glutamato Desidrogenase/metabolismo , Fígado/metabolismo , Transplante de Fígado/métodos , Manitol/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Preservação de Órgãos/métodos , Cloreto de Potássio/farmacologia , Procaína/farmacologia , Proteínas Quinases/metabolismo , Ratos Zucker
18.
FEBS J ; 289(18): 5463-5479, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34967991

RESUMO

In response to stress signal, nuclear factor-erythroid 2-related factor 2 (Nrf2) induces the expression of target genes involved in antioxidant defense and detoxification. Nrf2 activity is strictly regulated through a variety of mechanisms, including regulation of Keap1-Nrf2 stability, transcriptional regulation (NF-ĸB, ATF3, ATF4), and post-transcriptional regulation (miRNA), evidencing that transcriptional responses of Nrf2 are critical for the maintenance of homeostasis. Ischemia-reperfusion (IR) injury is a major cause of graft loss and dysfunction in clinical transplantation and organ resection. During the IR process, the generation of reactive oxygen species (ROS) leads to damage from oxidative stress, oxidation of biomolecules, and mitochondrial dysfunction. Oxidative stress can trigger apoptotic and necrotic cell death. Stress factors also result in the assembly of the inflammasome protein complex and the subsequent activation and secretion of proinflammatory cytokines. After Nrf2 activation, the downstream antioxidant upregulation can act as a primary cellular defense against the cytotoxic effects of oxidative stress and help to promote hepatic recovery during IR. The complex crosstalk between Nrf2 and cellular pathways in liver IR injury and the potential therapeutic target of the Nrf2 inducers will be discussed in the present review.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Antioxidantes/farmacologia , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Isquemia/complicações , Isquemia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
19.
Transplant Proc ; 54(7): 1954-1969, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961798

RESUMO

To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Ratos , Animais , Preservação de Órgãos/métodos , Isquemia Quente/efeitos adversos , Perfusão/efeitos adversos , Perfusão/métodos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Fígado/patologia , Biomarcadores/metabolismo
20.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203337

RESUMO

Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Animais , Modelos Animais de Doenças , Isquemia , Mitocôndrias , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA