Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(22): 12080-12086, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430319

RESUMO

Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Dobramento de RNA/fisiologia , RNA Catalítico/metabolismo , Nanotecnologia/métodos , Oryza/metabolismo
2.
Nat Chem Biol ; 13(10): 1109-1114, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825710

RESUMO

Twister is a small ribozyme present in almost all kingdoms of life that rapidly self-cleaves in variety of divalent metal ions. We used activity assays, bulk FRET and single-molecule FRET (smFRET) to understand how different metal ions promote folding and self-cleavage of the Oryza sativa twister ribozyme. Although most ribozymes require additional Mg2+ for catalysis, twister inverts this expectation, requiring 20-30 times less Mg2+ to self-cleave than to fold. Transition metals such as Co2+, Ni2+ and Zn2+ activate twister more efficiently than Mg2+ ions. Although twister is fully active in ≤ 0.5 mM MgCl2, smFRET experiments showed that the ribozyme visits the folded state infrequently under these conditions. Comparison of folding and self-cleavage rates indicates that most folding events lead to catalysis, which correlates with metal bond strength. Thus, the robust activity of twister reports on transient metal ion binding under physiological conditions.


Assuntos
Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Oryza/enzimologia , RNA Catalítico/química , RNA Catalítico/metabolismo , Zinco/farmacologia , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Magnésio/química , Oryza/genética , Zinco/química
3.
J Bacteriol ; 200(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507088

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that requires iron for growth and virulence. Under low-iron conditions, P. aeruginosa transcribes two highly identical (95%) small regulatory RNAs (sRNAs), PrrF1 and PrrF2, which are required for virulence in acute murine lung infection models. The PrrF sRNAs promote the production of 2-akyl-4(1H)-quinolone metabolites (AQs) that mediate a range of biological activities, including quorum sensing and polymicrobial interactions. Here, we show that the PrrF1 and PrrF2 sRNAs promote AQ production by redundantly inhibiting translation of antR, which encodes a transcriptional activator of the anthranilate degradation genes. A combination of genetic and biophysical analyses was used to define the sequence requirements for PrrF regulation of antR, demonstrating that the PrrF sRNAs interact with the antR 5' untranslated region (UTR) at sequences overlapping the translational start site of this mRNA. The P. aeruginosa Hfq protein interacted with UA-rich sequences in both PrrF sRNAs (Kd [dissociation constant] = 50 nM and 70 nM). Hfq bound with lower affinity to the antR mRNA (0.3 µM), and PrrF was able to bind to antR mRNA in the absence of Hfq. Nevertheless, Hfq increased the rate of PrrF annealing to the antR UTR by 10-fold. These studies provide a mechanistic description of how the PrrF1 and PrrF2 sRNAs mediate virulence traits, such as AQ production, in P. aeruginosaIMPORTANCE The iron-responsive PrrF sRNAs play a central role in regulating P. aeruginosa iron homeostasis and pathogenesis, yet the molecular mechanisms by which PrrF regulates gene expression are largely unknown. In this study, we used genetic and biophysical analyses to define the interactions of the PrrF sRNAs with Hfq, an RNA annealer, and the antR mRNA, which has downstream effects on quorum sensing and virulence factor production. These studies provide a comprehensive mechanistic analysis of how the PrrF sRNAs regulate virulence trait production through a key mRNA target in P. aeruginosa.


Assuntos
4-Quinolonas/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/genética , Virulência/genética
4.
J Am Chem Soc ; 140(32): 10067-10070, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063835

RESUMO

Vectorial folding of RNA during transcription can produce intermediates with distinct biochemical activities. Here, we design an artificial minimal system to mimic cotranscriptional RNA folding in vitro. In this system, a presynthesized RNA molecule begins to fold from its 5'-end, as it is released from a heteroduplex by an engineered helicase that translocates on the complementary DNA strand in the 3'-to-5' direction. This chemically stabilized "superhelicase" Rep-X processively unwinds thousands of base pairs of DNA. The presynthesized RNA enables us to flexibly position fluorescent labels on the RNA for single-molecule fluorescence resonance energy transfer analysis and allows us to study real-time conformational dynamics during the vectorial folding process. We observed distinct signatures of the maiden secondary and tertiary folding of the Oryza sativa twister ribozyme. The maiden vectorial tertiary folding transitions occurred faster than Mg2+-induced refolding, but were also more prone to misfolding, likely due to sequential formation of alternative secondary structures. This novel assay can be applied to studying other kinetically controlled processes, such as riboswitch control and RNA-protein assembly.


Assuntos
Dobramento de RNA , RNA Helicases/metabolismo , RNA/química , Cinética , Modelos Químicos , Conformação de Ácido Nucleico , Engenharia de Proteínas , RNA Helicases/química
5.
Nucleic Acids Res ; 41(15): 7536-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771143

RESUMO

The Sm-like protein Hfq is required for gene regulation by small RNAs (sRNAs) in bacteria and facilitates base pairing between sRNAs and their mRNA targets. The proximal and distal faces of the Hfq hexamer specifically bind sRNA and mRNA targets, but they do not explain how Hfq accelerates the formation and exchange of RNA base pairs. Here, we show that conserved arginines on the outer rim of the hexamer that are known to interact with sRNA bodies are required for Hfq's chaperone activity. Mutations in the arginine patch lower the ability of Hfq to act in sRNA regulation of rpoS translation and eliminate annealing of natural sRNAs or unstructured oligonucleotides, without preventing binding to either the proximal or distal face. Stopped-flow FRET and fluorescence anisotropy show that complementary RNAs transiently form a ternary complex with Hfq, but the RNAs are not released as a double helix in the absence of rim arginines. RNAs bound to either face of Hfq quench the fluorescence of a tryptophan adjacent to the arginine patch, demonstrating that the rim can simultaneously engage two RNA strands. We propose that the arginine patch overcomes entropic and electrostatic barriers to helix nucleation and constitutes the active site for Hfq's chaperone function.


Assuntos
Arginina/metabolismo , Pareamento de Bases , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Arginina/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Sequência Conservada , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Lisina/genética , Lisina/metabolismo , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Dobramento de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
6.
Angew Chem Int Ed Engl ; 54(25): 7281-4, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25959666

RESUMO

Non-coding antisense RNAs regulate bacterial genes in response to nutrition or environmental stress, and can be engineered for artificial gene control. The RNA chaperone Hfq accelerates antisense pairing between non-coding RNAs and their mRNA targets, by a mechanism still unknown. We used a photocaged guanosine derivative in an RNA oligonucleotide to temporally control Hfq catalyzed annealing. Using a fluorescent molecular beacon as a reporter, we observed RNA duplex formation within 15 s following irradiation (3 s) of photocaged RNA complexed with Hfq. The results showed that the Hfq chaperone directly stabilizes the initiation of RNA base pairs, and suggests a strategy for light-activated control of gene expression by non-coding RNAs.


Assuntos
Bactérias/química , Regulação Bacteriana da Expressão Gênica , Guanosina/análogos & derivados , RNA Bacteriano/química , RNA Mensageiro/química , RNA não Traduzido/química , Bactérias/genética , Pareamento de Bases , Guanosina/genética , Temperatura Alta , Luz , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Processos Fotoquímicos , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Raios Ultravioleta
7.
Nucleic Acids Res ; 40(17): 8690-7, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22761405

RESUMO

Regulation of bacterial gene networks by small non-coding RNAs (sRNAs) requires base pairing with messenger RNA (mRNA) targets, which is facilitated by Hfq protein. Hfq is recruited to sRNAs and mRNAs through U-rich- and A-rich-binding sites, respectively, but their distance from the sRNA-mRNA complementary region varies widely among different genes. To determine whether distance and binding orientation affect Hfq's chaperone function, we engineered 'toy' RNAs containing strong Hfq-binding sites at defined distances from the complementary target site. We show that RNA annealing is fastest when the distal face of Hfq binds an A-rich sequence immediately 3' of the target. This recruitment advantage is lost when Hfq binds >20 nt away from the target, but is partially restored by secondary structure that shortens this distance. Although recruitment through Hfq's distal face accelerates RNA annealing, tight binding of six Us to Hfq's proximal face inhibits annealing. Finally, we show that ectopic A-rich motifs dramatically accelerate base pairing between DsrA sRNA and a minimal rpoS mRNA in the presence of Hfq, demonstrating that proximity and orientation predict the activity of Hfq on long RNAs.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Regiões 5' não Traduzidas , Proteínas de Bactérias/genética , Pareamento de Bases , Sítios de Ligação , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Fator sigma/genética
8.
Nucleic Acids Res ; 39(12): 5193-202, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21378124

RESUMO

The Sm protein Hfq binds small non-coding RNA (sRNAs) in bacteria and facilitates their base pairing with mRNA targets. Molecular beacons and a 16 nt RNA derived from the Hfq binding site in DsrA sRNA were used to investigate how Hfq accelerates base pairing between complementary strands of RNA. Stopped-flow fluorescence experiments showed that annealing became faster with Hfq concentration but was impaired by mutations in RNA binding sites on either face of the Hfq ring or by competition with excess RNA substrate. A fast bimolecular Hfq binding step (∼10(8) M(-1)s(-1)) observed with Cy3-Hfq was followed by a slow transition (0.5 s(-1)) to a stable Hfq-RNA complex that exchanges RNA ligands more slowly. Release of Hfq upon addition of complementary RNA was faster than duplex formation, suggesting that the nucleic acid strands dissociate from Hfq before base pairing is complete. A working model is presented in which rapid co-binding and release of two RNA strands from the Hfq ternary complex accelerates helix initiation 10 000 times above the Hfq-independent rate. Thus, Hfq acts to overcome barriers to helix initiation, but the net reaction flux depends on how tightly Hfq binds the reactants and products and the potential for unproductive binding interactions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA não Traduzido/química , Pareamento de Bases , Sítios de Ligação , Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Cinética , Ligação Proteica , Pequeno RNA não Traduzido , RNA não Traduzido/metabolismo
9.
Nucleic Acids Res ; 37(18): 6205-13, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19671524

RESUMO

The Sm-like protein Hfq promotes the association of small antisense RNAs (sRNAs) with their mRNA targets, but the mechanism of Hfq's RNA chaperone activity is unknown. To investigate RNA annealing and strand displacement by Hfq, we used oligonucleotides that mimic functional sequences within DsrA sRNA and the complementary rpoS mRNA. Hfq accelerated at least 100-fold the annealing of a fluorescently labeled molecular beacon to a 16-nt RNA. The rate of strand exchange between the oligonucleotides increased 80-fold. Therefore, Hfq is very active in both helix formation and exchange. However, high concentrations of Hfq destabilize the duplex by preferentially binding the single-stranded RNA. RNA binding and annealing were completely inhibited by 0.5 M salt. The target site in DsrA sRNA was 1000-fold less accessible to the molecular beacon than an unstructured oligonucleotide, and Hfq accelerated annealing with DsrA only 2-fold. These and other results are consistent with recycling of Hfq during the annealing reaction, and suggest that the net reaction depends on the relative interaction of Hfq with the products and substrates.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , RNA Antissenso/química , RNA não Traduzido/química , Adenina/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes , Cinética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos , RNA Antissenso/metabolismo , Pequeno RNA não Traduzido , RNA não Traduzido/metabolismo , Sais/química , Fator sigma/genética , Espectrometria de Fluorescência , Uridina/química
10.
Methods Mol Biol ; 2106: 19-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889249

RESUMO

Diverse types of RNA-binding proteins chaperone the interactions of noncoding RNAs by increasing the rate of RNA base pairing and by stabilizing the final RNA duplex. The E. coli protein Hfq facilitates interactions between small noncoding RNAs and their target mRNAs. The chaperone and RNA annealing activity of Hfq and other RNA chaperones can be evaluated by determining the kinetics of RNA base pairing in the presence and absence of the protein. This chapter presents protocols for measuring RNA annealing kinetics using electrophoretic gel mobility shift assays (EMSA), stopped-flow fluorescence, and fluorescence anisotropy. EMSA is low cost and can resolve reaction intermediates of natural small RNAs and mRNA fragments, as long as the complexes are sufficiently long-lived (≥10 s) to be trapped during electrophoresis. Stopped-flow fluorescence can detect annealing reactions between 1 ms and 30 s and is best suited for measuring the rapid annealing of oligoribonucleotides. Fluorescence anisotropy reports the physical size of the complex and is well-suited for monitoring the association and dissociation of RNA from Hfq during the chaperone cycle.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética/métodos , Chaperonas Moleculares/metabolismo , RNA/metabolismo , Animais , Polarização de Fluorescência/métodos , Humanos , Chaperonas Moleculares/química , RNA/química , Estabilidade de RNA
11.
BMC Microbiol ; 9: 20, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19178705

RESUMO

BACKGROUND: Protonophores are the agents that dissipate the proton-motive-force (PMF) across E. coli plasma membrane. As the PMF is known to be an energy source for the translocation of membrane and periplasmic proteins after their initial syntheses in cell cytoplasm, protonophores therefore inhibit the translocation phenomenon. In addition, protonophores also induce heat-shock-like stress response in E. coli cell. In this study, our motivation was to investigate that how the protonophores-mediated phenomena like inhibition of protein translocation and induction of heat-shock proteins in E. coli were correlated. RESULTS: Induction of heat-shock-like response in E. coli attained the maximum level after about 20 minutes of cell growth in the presence of a protonophore like carbonyl cyanide m-chloro phenylhydrazone (CCCP) or 2, 4-dinitrophenol (DNP). With induction, cellular level of the heat-shock regulator protein sigma-32 also increased. The increase in sigma-32 level was resulted solely from its stabilization, not from its increased synthesis. On the other hand, the protonophores inhibited the translocation of the periplasmic protein alkaline phosphatase (AP), resulting its accumulation in cell cytosol partly in aggregated and partly in dispersed form. On further cell growth, after withdrawal of the protonophores, the previously accumulated AP could not be translocated out; instead the AP-aggregate had been degraded perhaps by an induced heat-shock protease ClpP. Moreover, the non-translocated AP formed binary complex with the induced heat-shock chaperone DnaK and the excess cellular concentration of DnaK disallowed the induction of heat-shock response by the protonophores. CONCLUSION: Our experimental results suggested that the protonophores-mediated accumulation and aggregation of membrane proteins (like AP) in cell cytosol had signaled the induction of heat-shock proteins in E. coli and the non-translocated protein aggregates were possibly degraded by an induced heat-shock protease ClpP. Moreover, the induction of heat-shock response occurred by the stabilization of sigma-32. As, normally the DnaK-bound sigma-32 was known to be degraded by the heat-shock protease FtsH, our experimental results further suggested that the engagement of DnaK with the non-translocated proteins (like AP) had made the sigma-32 free and stable.


Assuntos
Escherichia coli/efeitos dos fármacos , Resposta ao Choque Térmico , Ionóforos/farmacologia , Força Próton-Motriz/efeitos dos fármacos , 2,4-Dinitrofenol , Fosfatase Alcalina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Citosol/química , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Transporte Proteico/efeitos dos fármacos , Fator sigma/metabolismo
12.
Mol Membr Biol ; 25(5): 411-22, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18651316

RESUMO

Artificial transformation of Escherichia coli with plasmid DNA in presence of CaCl2 is a widely used technique in recombinant DNA technology. However, exact mechanism of DNA transfer across cell membranes is largely obscure. In this study, measurements of both steady state and time-resolved anisotropies of fluorescent dye trimethyl ammonium diphenyl hexatriene (TMA-DPH), bound to cellular outer membrane, indicated heat-pulse (0 degrees C42 degrees C) step of the standard transformation procedure had lowered considerably outer membrane fluidity of cells. The decrease in fluidity was caused by release of lipids from cell surface to extra-cellular medium. A subsequent cold-shock (42 degrees C0 degrees C) to the cells raised the fluidity further to its original value and this was caused by release of membrane proteins to extra-cellular medium. When the cycle of heat-pulse and cold-shock steps was repeated, more release of lipids and proteins respectively had taken place, which ultimately enhanced transformation efficiency gradually up to third cycle. Study of competent cell surface by atomic force microscope showed release of lipids had formed pores on cell surface. Moreover, the heat-pulse step almost depolarized cellular inner membrane. In this communication, we propose heat-pulse step had two important roles on DNA entry: (a) Release of lipids and consequent formation of pores on cell surface, which helped DNA to cross outer membrane barrier, and (b) lowering of membrane potential, which facilitated DNA to cross inner membrane of E. coli.


Assuntos
Cloreto de Cálcio/química , Escherichia coli , Fluidez de Membrana , Lipídeos de Membrana , Plasmídeos/química , Transformação Genética , Temperatura Baixa , Escherichia coli/ultraestrutura , Temperatura Alta , Microscopia de Força Atômica , Propriedades de Superfície
13.
Methods Enzymol ; 623: 209-227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239047

RESUMO

In the cell, RNAs fold and begin to function as they are being transcribed. In contrast, in the laboratory, RNAs are typically studied after transcription is completed. Co-transcriptional folding can regulate the function of riboswitches and ribozymes and dictate the order of ribonucleoprotein assembly. Methods to observe and investigate RNA folding and activity during transcription are therefore desirable, yet synchronizing RNA polymerases and incorporating labels at specific sites for biophysical studies can be challenging. A recent methodological advance has been to harness highly processive, engineered "super-helicases" to unwind hybrid RNA-DNA duplexes, thereby releasing the RNA 5'-3'. When combined with single-molecule fluorescence detection, RNA folding and concomitant activity can be studied in vitro in a manner that mimics vectorial folding during transcription. Herein, we describe methods for designing and preparing fluorescently labeled RNA-DNA duplex substrates for sequential helicase-dependent RNA folding experiments.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Riboswitch , Corantes Fluorescentes/química , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Dobramento de RNA , RNA Helicases/química , Transcrição Gênica
14.
Biomacromolecules ; 9(9): 2501-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18698848

RESUMO

In the standard procedure for artificial transformation of E. coli by plasmid DNA, cellular competence for DNA uptake is developed by suspending the cells in ice-cold CaCl2 (50-100 mM). It is believed that CaCl2 helps DNA adsorption to the lipopolysaccharide (LPS) molecules on E. coli cell surface; however, the binding mechanism is mostly obscure. In this report, we present our findings of an in-depth study on in vitro interaction between plasmid DNA and E. coli LPS, using different techniques like absorption and circular dichroism spectroscopy, isothermal titration calorimetry, electron and atomic force microscopy, and so on. The results suggest that the Ca(II) ions, forming coordination complexes with the phosphates of DNA and LPS, facilitate the binding between them. The binding interaction appears to be cooperative, reversible, exothermic, and enthalpy-driven in nature. Binding of LPS causes a partial transition of DNA from B- to A-form. Finer study with the hydrolyzed products of LPS shows that only the core oligosaccharide domain of LPS is responsible for the interaction with DNA. Moreover, the biological significance of this interaction becomes evident from the observation that E. coli cells, from which the LPS have been leached out considerably, show higher efficiency of transformation, when transformed with plasmid-LPS complex rather than plasmid DNA alone.


Assuntos
Cloreto de Cálcio/metabolismo , DNA/metabolismo , Escherichia coli/citologia , Lipopolissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Plasmídeos/metabolismo , Transformação Bacteriana , Adsorção , Sítios de Ligação , Cloreto de Cálcio/química , Citosol/química , Citosol/metabolismo , DNA/química , Relação Dose-Resposta a Droga , Escherichia coli/química , Escherichia coli/genética , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Tamanho da Partícula , Plasmídeos/química , Propriedades de Superfície
15.
Microbiol Spectr ; 6(4)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30051798

RESUMO

RNA-binding proteins chaperone the biological functions of noncoding RNA by reducing RNA misfolding, improving matchmaking between regulatory RNA and targets, and exerting quality control over RNP biogenesis. Recent studies of Escherichia coli CspA, HIV NCp, and E. coli Hfq are beginning to show how RNA-binding proteins remodel RNA structures. These different protein families use common strategies for disrupting or annealing RNA double helices, which can be used to understand the mechanisms by which proteins chaperone RNA-dependent regulation in bacteria.


Assuntos
Chaperonas Moleculares/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Conformação de Ácido Nucleico , Domínios e Motivos de Interação entre Proteínas , Dobramento de RNA , Pequeno RNA não Traduzido/metabolismo
16.
J Biotechnol ; 127(1): 14-20, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16876281

RESUMO

The standard method of transformation of Escherichea coli with plasmid DNA involves two important steps: cells are first suspended in 100mM CaCl(2) at 0 degrees C (in which DNA is added), followed by the administration of a heat-pulse from 0 to 42 degrees C for 90s [Cohen, S., Chang, A., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria. Proc. Natl. Acad. Sci. U.S.A., 69, 2110-2114]. The first step makes the cells competent for uptake of DNA and the second step is believed to facilitate the DNA entry into the cells by an unknown mechanism. In this study, the measure of membrane potential of the intact competent cells, at different steps of transformation process, either by the method of spectrofluorimetry or that of flow cytometry, indicates that the heat-pulse step (0-->42 degrees C) heavily decreases the membrane potential. A subsequent cold shock (42-->0 degrees C) raises the potential further to its original value. Moreover, the efficiency of transformation of E. coli XL1 Blue cells with plasmid pUC19 DNA remains unaltered when the heat-pulse step is replaced by the incubation of the DNA-adsorbed competent cells with 10 microM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 90s at 0 degrees C. Since the CCCP, a well-known protonophore, reduces membrane potential by dissipating the proton-motive-force (PMF) across E. coli plasma membrane, our experimental results suggest that the heat-pulse step of the standard transformation procedure facilitates DNA entry into the cells by lowering the membrane potential.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , DNA/farmacocinética , Potenciais da Membrana/fisiologia , Plasmídeos/genética , Transformação Bacteriana/fisiologia , Escherichia coli/genética , Escherichia coli/fisiologia , Citometria de Fluxo , Calefação , Plasmídeos/fisiologia , Espectrometria de Fluorescência
17.
J Mol Biol ; 428(11): 2259-2264, 2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27049793

RESUMO

The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms.


Assuntos
Arginina/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Virulência/genética
18.
Methods Mol Biol ; 1259: 369-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25579597

RESUMO

Fluorescence spectroscopy is a sensitive technique for detecting protein-protein, protein-RNA, and RNA-RNA interactions, requiring only nanomolar concentrations of labeled components. Fluorescence anisotropy provides information about the assembly of multi-subunit proteins, while molecular beacons provide a sensitive and quantitative reporter for base pairing between complementary RNAs. Here we present a detailed protocol for labeling Hfq protein with cyanine 3-maleimide and dansyl chloride to study the protein oligomerization and RNA binding by semi-native polyacrylamide gel electrophoresis (PAGE) and fluorescence anisotropy. We also present a detailed protocol for measuring the rate of annealing between a molecular beacon and a target RNA in the presence of Hfq using a stopped-flow spectrometer.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência/métodos , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Eletroforese em Gel de Poliacrilamida
19.
J Mol Biol ; 427(22): 3491-3500, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26196441

RESUMO

Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Pareamento de Bases , Sequência de Bases , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética
20.
J Mol Biol ; 417(5): 406-12, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22326348

RESUMO

The bacterial Sm-like protein Hfq forms a ring-shaped homo-hexamer that is necessary for Hfq to bind nucleic acids and to act in small noncoding RNA regulation. Using semi-native gels and fluorescence anisotropy, we show that Hfq undergoes a cooperative conformational change from monomer to hexamer around 1 µM protein, which is comparable to the in vivo concentration of Hfq and above the dissociation constant of the Hfq hexamer from many RNA substrates. Above 2 µM protein, Hfq hexamers associate in high-molecular-weight complexes. Mutations that impair RNA binding to the proximal face strongly destabilize the hexamer, while the mutation R16A near the outer rim prevents hexamer association. Stopped-flow fluorescence resonance energy transfer experiments showed that Hfq subunits interact within a few seconds, suggesting that Hfq monomers, hexamers and multi-hexamer complexes are in dynamic equilibrium. Finally, we show that Hfq is most active in RNA annealing when the hexamer is present. These results suggest that RNA binding is coupled to hexamer assembly and that the biochemical activity of Hfq reflects the equilibrium between different quaternary structures.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Multimerização Proteica , RNA Bacteriano/metabolismo , Polarização de Fluorescência , Géis , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA