Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 16(3): e1008647, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32168334

RESUMO

Synthetic sex distorters have recently been developed in the malaria mosquito, relying on endonucleases that target the X-chromosome during spermatogenesis. Although inspired by naturally-occurring traits, it has remained unclear how they function and, given their potential for genetic control, how portable this strategy is across species. We established Drosophila models for two distinct mechanisms for CRISPR/Cas9 sex-ratio distortion-"X-shredding" and "X-poisoning"-and dissected their target-site requirements and repair dynamics. X-shredding resulted in sex distortion when Cas9 endonuclease activity occurred during the meiotic stages of spermatogenesis but not when Cas9 was expressed from the stem cell stages onwards. Our results suggest that X-shredding is counteracted by the NHEJ DNA repair pathway and can operate on a single repeat cluster of non-essential sequences, although the targeting of a number of such repeats had no effect on the sex ratio. X-poisoning by contrast, i.e. targeting putative haplolethal genes on the X chromosome, induced a high bias towards males (>92%) when we directed Cas9 cleavage to the X-linked ribosomal target gene RpS6. In the case of X-poisoning sex distortion was coupled to a loss in reproductive output, although a dominant-negative effect appeared to drive the mechanism of female lethality. These model systems will guide the study and the application of sex distorters to medically or agriculturally important insect target species.


Assuntos
Edição de Genes/métodos , Processos de Determinação Sexual/genética , Pré-Seleção do Sexo/métodos , Animais , Sistemas CRISPR-Cas/genética , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endonucleases/genética , Feminino , Masculino , Modelos Animais , Controle Biológico de Vetores/métodos , Razão de Masculinidade , Espermatogênese/genética , Cromossomo X/genética
2.
BMC Biol ; 19(1): 78, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863334

RESUMO

BACKGROUND: Genetic sex ratio distorters are systems aimed at effecting a bias in the reproductive sex ratio of a population and could be applied for the area-wide control of sexually reproducing insects that vector disease or disrupt agricultural production. One example of such a system leading to male bias is X-shredding, an approach that interferes with the transmission of the X-chromosome by inducing multiple DNA double-strand breaks during male meiosis. Endonucleases targeting the X-chromosome and whose activity is restricted to male gametogenesis have recently been pioneered as a means to engineer such traits. RESULTS: Here, we enabled endogenous CRISPR/Cas9 and CRISPR/Cas12a activity during spermatogenesis of the Mediterranean fruit fly Ceratitis capitata, a worldwide agricultural pest of extensive economic significance. In the absence of a chromosome-level assembly, we analysed long- and short-read genome sequencing data from males and females to identify two clusters of abundant and X-chromosome-specific sequence repeats. When targeted by gRNAs in conjunction with Cas9, cleavage of these repeats yielded a significant and consistent distortion of the sex ratio towards males in independent transgenic strains, while the combination of distinct distorters induced a strong bias (~ 80%). CONCLUSION: We provide a first demonstration of CRISPR-based sex distortion towards male bias in a non-model organism, the global pest insect Ceratitis capitata. Although the sex ratio bias reached in our study would require improvement, possibly through the generation and combination of additional transgenic lines, to result in a system with realistic applicability in the field, our results suggest that strains with characteristics suitable for field application can now be developed for a range of medically or agriculturally relevant insect species.


Assuntos
Ceratitis capitata , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Ceratitis capitata/genética , Feminino , Masculino , RNA Guia de Cinetoplastídeos , Razão de Masculinidade , Cromossomo X/genética
3.
Genome Res ; 27(9): 1536-1548, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747381

RESUMO

Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.


Assuntos
Anopheles/genética , Evolução Molecular , Genes Ligados ao Cromossomo X/genética , Proteínas de Insetos/genética , Malária/genética , Animais , Anopheles/patogenicidade , Feminino , Regulação da Expressão Gênica/genética , Especiação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Malária/parasitologia , Malária/transmissão , Masculino , Especificidade de Órgãos/genética , Filogenia , Caracteres Sexuais , Cromossomo X/genética
4.
Arch Insect Biochem Physiol ; 103(3): e21652, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31845410

RESUMO

Agricultural pest control using genetic-based methods provides a species-specific and environmentally harmless way for population suppression of fruit flies. One way to improve the efficiency of such methods is through self-limiting, female-eliminating approaches that can alter an insect populations' sex ratio toward males. In this microreview, we summarize recent advances in synthetic sex ratio distorters based on X-chromosome shredding that can induce male-biased progeny. We outline the basic principles to guide the efficient design of an X-shredding system in an XY heterogametic fruit fly species of interest using CRISPR/Cas gene editing, newly developed computational tools, and insect genetic engineering. We also discuss technical aspects and challenges associated with the efficient transferability of this technology in fruit fly pest populations, toward the potential use of this new class of genetic control approaches for pest management purposes.


Assuntos
Sistemas CRISPR-Cas , Dípteros/genética , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Razão de Masculinidade , Animais , Feminino , Edição de Genes , Masculino
5.
Proc Natl Acad Sci U S A ; 113(15): E2114-23, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035980

RESUMO

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Assuntos
Anopheles/genética , Cromossomos de Insetos/genética , Insetos Vetores/genética , Cromossomo Y/genética , Animais , Feminino , Malária , Masculino , Filogenia , Análise de Sequência de DNA , Cromossomo X/genética
6.
Nature ; 473(7346): 212-5, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21508956

RESUMO

Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquito's ability to serve as a disease vector. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions and the homing endonuclease gene I-SceI, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.


Assuntos
Anopheles/genética , Engenharia Genética , Insetos Vetores/genética , Controle de Mosquitos/métodos , Animais , Animais Geneticamente Modificados , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Feminino , Genes Reporter/genética , Genótipo , Masculino , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 111(21): 7600-5, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821795

RESUMO

Despite its function in sex determination and its role in driving genome evolution, the Y chromosome remains poorly understood in most species. Y chromosomes are gene-poor, repeat-rich and largely heterochromatic and therefore represent a difficult target for genetic engineering. The Y chromosome of the human malaria vector Anopheles gambiae appears to be involved in sex determination although very little is known about both its structure and function. Here, we characterize a transgenic strain of this mosquito species, obtained by transposon-mediated integration of a transgene construct onto the Y chromosome. Using meganuclease-induced homologous repair we introduce a site-specific recombination signal onto the Y chromosome and show that the resulting docking line can be used for secondary integration. To demonstrate its utility, we study the activity of a germ-line-specific promoter when located on the Y chromosome. We also show that Y-linked fluorescent transgenes allow automated sex separation of this important vector species, providing the means to generate large single-sex populations. Our findings will aid studies of sex chromosome function and enable the development of male-exclusive genetic traits for vector control.


Assuntos
Anopheles/genética , Cromossomos de Insetos/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Cromossomo Y/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , Citometria de Fluxo , Fluorescência , Técnicas de Introdução de Genes , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Análise de Sequência de RNA , Espermatogênese/fisiologia , Transgenes/genética
8.
Nat Commun ; 15(1): 372, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191463

RESUMO

Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.


Assuntos
Ceratitis capitata , Tecnologia de Impulso Genético , Feminino , Masculino , Animais , Ceratitis capitata/genética , Agricultura , Alelos , Fontes de Energia Elétrica
9.
Nat Commun ; 15(1): 4983, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862555

RESUMO

Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.


Assuntos
Anopheles , Drosophila melanogaster , Tecnologia de Impulso Genético , Razão de Masculinidade , Espermatogênese , Cromossomo X , Animais , Masculino , Feminino , Anopheles/genética , Cromossomo X/genética , Drosophila melanogaster/genética , Tecnologia de Impulso Genético/métodos , Espermatogênese/genética , Mosquitos Vetores/genética , Genes Ligados ao Cromossomo X , Sistemas CRISPR-Cas , Espermatozoides/metabolismo , Animais Geneticamente Modificados
10.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370138

RESUMO

The New World Screwworm, Cochliomyia hominivorax (Calliphoridae), is the most important myiasis-causing species in America. Screwworm myiasis is a zoonosis that can cause severe lesions in livestock, domesticated and wild animals, and occasionally in people. Beyond the sanitary problems associated with this species, these infestations negatively impact economic sectors, such as the cattle industry. Here, we present a chromosome-scale assembly of C. hominivorax's genome, organized in 6 chromosome-length and 515 unplaced scaffolds spanning 534 Mb. There was a clear correspondence between the D. melanogaster linkage groups A-E and the chromosomal-scale scaffolds. Chromosome quotient (CQ) analysis identified a single scaffold from the X chromosome that contains most of the orthologs of genes that are on the D. melanogaster fourth chromosome (linkage group F or dot chromosome). CQ analysis also identified potential X and Y unplaced scaffolds and genes. Y-linkage for selected regions was confirmed by PCR with male and female DNA. Some of the long chromosome-scale scaffolds include Y-linked sequences, suggesting misassembly of these regions. These resources will provide a basis for future studies aiming at understanding the biology and evolution of this devastating obligate parasite.


Assuntos
Miíase , Infecção por Mosca da Bicheira , Animais , Masculino , Feminino , Bovinos , Calliphoridae , Drosophila melanogaster , Miíase/veterinária , Infecção por Mosca da Bicheira/veterinária , Cromossomos
11.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577635

RESUMO

Insects have developed remarkable adaptations to effectively interact with plant secondary metabolites and utilize them as cues to identify suitable hosts. Consequently, humans have used aromatic plants for centuries to repel mosquitoes. The repellent effects of plant volatile compounds are mediated through olfactory structures present in the antennae, and maxillary palps of mosquitoes. Mosquito maxillary palps contain capitate-peg sensilla, which house three olfactory sensory neurons, of which two are mainly tuned to either carbon dioxide or octenol - two animal host odorants. However, the third neuron, which expresses the OR49 receptor, has remained without a known ecologically-relevant odorant since its initial discovery. In this study, we used odorant mixtures and terpenoid-rich Cannabis essential oils to investigate the activation of OR49. Our results demonstrate that two monoterpenoids, borneol and camphor, selectively activate OR49, and OR9-expressing neurons, as well as the MD3 glomerulus in the antennal lobe. We confirm that borneol repels female mosquitoes, and knocking out the gene encoding the OR49 receptor suppresses the response of the corresponding olfactory sensory neuron. Importantly, this molecular mechanism of action is conserved across culicine mosquito species, underscoring its significance in their olfactory systems.

12.
BMC Evol Biol ; 12: 69, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22607633

RESUMO

BACKGROUND: In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z). Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. RESULTS: We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. CONCLUSION: The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.


Assuntos
Anopheles/genética , Evolução Molecular , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Culex/genética , Drosophila melanogaster/genética , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Genes de Insetos , Genômica , Células Germinativas/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Transgenes
13.
Genetica ; 139(1): 33-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20821345

RESUMO

In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.


Assuntos
Animais Geneticamente Modificados/genética , Anopheles/genética , Técnicas de Transferência de Genes , Controle de Mosquitos , Animais , Elementos de DNA Transponíveis/genética
14.
PLoS Genet ; 4(12): e1000291, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057670

RESUMO

We have exploited the high selectivity of the homing endonuclease I-PpoI for the X-linked Anopheles gambiae 28S ribosomal genes to selectively target X chromosome carrying spermatozoa. Our data demonstrated that in heterozygous males, the expression of I-PpoI in the testes induced a strong bias toward Y chromosome-carrying spermatozoa. Notably, these male mosquitoes also induced complete early dominant embryo lethality in crosses with wild-type females. Morphological and molecular data indicated that all spermatozoa, irrespectively of the inheritance of the transgene, carried a substantial amount of I-PpoI protein that could attack the maternally inherited chromosome X of the embryo. Besides the obvious implications for implementing vector control measures, our data demonstrated the feasibility of generating synthetic sex distorters and revealed the intriguing possibility of manipulating maternally inherited genes using wild-type sperm cells carrying engineered endonucleases.


Assuntos
Anopheles/genética , Controle de Mosquitos , Animais , Anopheles/embriologia , Anopheles/enzimologia , Anopheles/fisiologia , Cruzamentos Genéticos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Embrião não Mamífero/enzimologia , Embrião não Mamífero/fisiologia , Feminino , Marcação de Genes , Engenharia Genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Mortalidade , Aberrações dos Cromossomos Sexuais , Cromossomos Sexuais/enzimologia , Cromossomos Sexuais/genética , Razão de Masculinidade , Especificidade da Espécie , Espermatogênese , Espermatozoides/enzimologia , Espermatozoides/fisiologia
15.
Front Bioeng Biotechnol ; 9: 752253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957064

RESUMO

Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against, their frequency in the population declines once releases are halted. However, unintended transfer of X-shredders to the Y-chromosome could produce an invasive meiotic drive element, that benefits from its biased transmission to the predominant male-biased offspring and its effective shielding from female negative selection. Indeed, linkage to the Y-chromosome of an active X-shredder instigated the development of the nuclease-based X-shredding system. Here, we analyze mechanisms whereby an autosomal X-shredder could become unintentionally Y-linked after release by evaluating the stability of an established X-shredder strain that is being considered for release, exploring its potential for remobilization in laboratory and wild-type genomes of An. gambiae and provide data regarding expression on the mosquito Y-chromosome. Our data suggest that an invasive X-shredder resulting from a post-release movement of such autosomal transgenes onto the Y-chromosome is unlikely.

16.
Nat Commun ; 12(1): 7202, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893590

RESUMO

CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be beneficial to drive the expression in a sex-specific manner to produce genetic sexing systems, sex ratio distorters, or even sex-specific gene drives, for example. To explore this possibility, here we develop a transgenic line of Drosophila melanogaster expressing Cas9 from the Y chromosome. We functionally characterize the utility of this strain for both sex selection and gene drive finding it to be quite effective. To explore its utility for population control, we built mathematical models illustrating its dynamics as compared to other state-of-the-art systems designed for both population modification and suppression. Taken together, our results contribute to the development of current CRISPR genetic control tools and demonstrate the utility of using sex-linked Cas9 strains for genetic control of animals.


Assuntos
Sistemas CRISPR-Cas , Tecnologia de Impulso Genético/métodos , Genes Ligados ao Cromossomo Y , Pré-Seleção do Sexo/métodos , Cromossomo Y , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Endonucleases/genética , Feminino , Edição de Genes/métodos , Masculino , Razão de Masculinidade , Biologia Sintética/métodos , Transgenes
17.
J Appl Ecol ; 57(10): 2086-2096, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149368

RESUMO

The development of genetically modified (GM) mosquitoes and their subsequent field release offers innovative and cost-effective approaches to reduce mosquito-borne diseases, such as malaria. A sex-distorting autosomal transgene has been developed recently in G3 mosquitoes, a laboratory strain of the malaria vector Anopheles gambiae s.l. The transgene expresses an endonuclease called I-PpoI during spermatogenesis, which selectively cleaves the X chromosome to result in ~95% male progeny. Following the World Health Organization guidance framework for the testing of GM mosquitoes, we assessed the dynamics of this transgene in large cages using a joint experimental modelling approach.We performed a 4-month experiment in large, indoor cages to study the population genetics of the transgene. The cages were set up to mimic a simple tropical environment with a diurnal light-cycle, constant temperature and constant humidity. We allowed the generations to overlap to engender a stable age structure in the populations. We constructed a model to mimic the experiments, and used the experimental data to infer the key model parameters.We identified two fitness costs associated with the transgene. First, transgenic adult males have reduced fertility and, second, their female progeny have reduced pupal survival rates. Our results demonstrate that the transgene is likely to disappear in <3 years under our confined conditions. Model predictions suggest this will be true over a wide range of background population sizes and transgene introduction rates. Synthesis and applications. Our study is in line with the World Health Organization guidance recommendations in regard to the development and testing of GM mosquitoes. Since the transgenic sex ratio distorter strain (Ag(PMB)1) has been considered for genetic vector control of malaria, we recorded the dynamics of this transgene in indoor-large cage populations and modelled its post-release persistence under different scenarios. We provide a demonstration of the self-limiting nature of the transgene, and identified new fitness costs that will further reduce the longevity of the transgene after its release. Finally, our study has showcased an alternative and effective statistical method for characterizing the phenotypic expression of a transgene in an insect pest population.

18.
Genome Biol ; 21(1): 215, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847630

RESUMO

BACKGROUND: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. RESULTS: We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. CONCLUSION: The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.


Assuntos
Aedes/genética , Arbovírus/genética , Genoma , Mosquitos Vetores/genética , Aedes/imunologia , Aedes/virologia , Animais , Mapeamento Cromossômico , Cromossomos , Tamanho do Genoma , Imunidade , Insetos Vetores , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia , RNA Interferente Pequeno/genética , Transcriptoma
19.
BMC Mol Biol ; 10: 65, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19573226

RESUMO

BACKGROUND: Germline specific promoters are an essential component of potential vector control strategies which function by genetic drive, however suitable promoters are not currently available for the main human malaria vector Anopheles gambiae. RESULTS: We have identified the Anopheles gambiae vasa-like gene and found its expression to be specifically localized to both the male and female gonads in adult mosquitoes. We have functionally characterised using transgenic reporter lines the regulatory regions required for driving transgene expression in a pattern mirroring that of the endogenous vasa locus. Two reporter constructs indicate the existence of distinct vasa regulatory elements within the 5' untranslated regions responsible not only for the spatial and temporal but also for the sex specific germline expression. vasa driven eGFP expression in the ovary of heterozygous mosquitoes resulted in the progressive accumulation of maternal protein and transcript in developing oocytes that were then detectable in all embryos and neonatal larvae. CONCLUSION: We have characterized the vasa regulatory regions that are not only suited to drive transgenes in the early germline of both sexes but could also be utilized to manipulate the zygotic genome of developing embryos via maternal deposition of active molecules. We have used computational models to show that a homing endonuclease-based gene drive system can function in the presence of maternal deposition and describe a novel non-invasive control strategy based on early vasa driven homing endonuclease expression.


Assuntos
Anopheles/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Animais Geneticamente Modificados , Anopheles/embriologia , Anopheles/metabolismo , RNA Helicases DEAD-box/genética , Feminino , Genes Reporter , Masculino , Dados de Sequência Molecular , Oogênese , Óvulo/citologia , Óvulo/metabolismo , Espermatogênese , Espermatozoides/citologia , Espermatozoides/metabolismo , Transgenes
20.
Malar J ; 8 Suppl 2: S5, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19917075

RESUMO

The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.


Assuntos
Anopheles/genética , Técnicas de Transferência de Genes/tendências , Controle de Mosquitos/métodos , Análise para Determinação do Sexo/métodos , Animais , Anopheles/crescimento & desenvolvimento , Feminino , Masculino , Caracteres Sexuais , Processos de Determinação Sexual , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA