Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606782

RESUMO

The Hippo signalling pathway, a highly conserved signalling cassette, regulates organ size by controlling cell growth, apoptosis and stem cell self-renewal. The tumourigenic potential of this pathway is largely attributed to the activity of YAP/TAZ, which activate the TEAD1-4 transcription factors, leading to the expression of genes involved in cell proliferation and suppression of cell death. Aberrant regulation of the YAP/TAZ-TEAD signalling axis is commonly observed in malignant pleural mesothelioma (MPM), an insidious neoplasm of the pleural tissue that lines the chest cavity and covers the lungs with poor prognosis. Given the limited effectiveness of current treatments, targeting the YAP/TAZ-TEAD signalling cascade has emerged as a promising therapeutic strategy in MPM. Several inhibitors of the YAP/TAZ-TEAD signalling axis are presently undergoing clinical development, with the goal of advancing them to clinical use in the near future.


Assuntos
Mesotelioma Maligno , Neoplasias , Humanos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Hippo
2.
Mol Biol Rep ; 51(1): 564, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647725

RESUMO

BACKGROUND: Recent studies suggest that hypoxia-inducible factor 1-alpha (HIF-1α) and the small GTPase protein Ras-related protein Rab-22 A (RAB22A) may be colocalized in the cytoplasm and that as a conequence they may enhance the formation of microvesicles in breast cancer cells under hypoxia. Therefore, we sought to determine whether these two proteins are present in intracellular complexes in breast carcinoma cells. METHODS AND RESULTS: Evaluation using molecular docking indicated that HIF-1α and RAB22A interact with each other. Co-immunoprecipitation of endogenous or ectopically expressed HIF-1α and RAB22A proteins in MDA-MB-231 breast cancer cells or HEK-293T cells demonstrated that endogenous HIF-1α and RAB22A can form an intracellular complex; however, transiently expressed HIF-1α and RAB22A failed to interact. Investigating RAB22A and HIF-1α interactions in various cancer cell lines under hypoxia may shed light on their roles in cancer cell survival and progression through regulation of intracellular trafficking by HIF-1α under hypoxic conditions. CONCLUSIONS: Our study is the first to reveal the potential involvement of HIF-1α in intracellular trafficking through physical interactions with the small GTPase protein RAB22A. We discuss the implications of our work on the role of exosomes and microvesicles in tumor invasiveness.


Assuntos
Neoplasias da Mama , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Hipóxia Celular , Simulação de Acoplamento Molecular , Ligação Proteica
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396903

RESUMO

According to GLOBOCAN 2020 data, colorectal cancer (CRC) represents the third most common malignancy and the second most deadly cancer worldwide [...].


Assuntos
Neoplasias Colorretais , Segunda Neoplasia Primária , Humanos , Neoplasias Colorretais/tratamento farmacológico
4.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338909

RESUMO

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo
6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473834

RESUMO

In the intricate landscape of human biology, the mechanistic target of rapamycin (mTOR) emerges as a key regulator, orchestrating a vast array of processes in health and disease [...].


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos
7.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612628

RESUMO

It is widely acknowledged that mechanical forces exerted throughout the human body are critical for cellular and tissue homeostasis [...].


Assuntos
Mecanotransdução Celular , Humanos
8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000206

RESUMO

The development of vaccines has drastically reduced the mortality and morbidity of several diseases. Despite the great success of vaccines, the immunological processes involved in protective immunity are not fully understood and several issues remain to be elucidated. Recently, the advent of high-throughput technologies has enabled a more in-depth investigation of the immune system as a whole and the characterization of the interactions of numerous components of immunity. In the field of vaccinology, these tools allow for the exploration of the molecular mechanisms by which vaccines can induce protective immune responses. In this review, we aim to describe current data on transcriptional responses to vaccination, focusing on similarities and differences of vaccine-induced transcriptional responses among vaccines mostly in healthy adults, but also in high-risk populations, such as the elderly and children. Moreover, the identification of potential predictive biomarkers of vaccine immunogenicity, the effect of age on transcriptional response and future perspectives for the utilization of transcriptomics in the field of vaccinology will be discussed.


Assuntos
Medicina de Precisão , Vacinação , Vacinas , Humanos , Medicina de Precisão/métodos , Vacinas/imunologia , Perfilação da Expressão Gênica/métodos , Transcriptoma , Transcrição Gênica , Animais
9.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473726

RESUMO

The genes coding for the tumor suppressors p53 and retinoblastoma (Rb) are inactivated in the vast majority of small cell lung cancer (SCLC) tumors. Data support the notion that these two deleterious genetic events represent the initial steps in the development of SCLC, making them essential for a lung epithelial cell to progress toward the acquisition of a malignant phenotype. With the loss of TP53 and RB1, their broad tumor suppressive functions are eliminated and a normal cell is able to proliferate indefinitely, escape entering into cellular senescence, and evade death, no matter the damage it has experienced. Within this setting, lung epithelial cells accumulate further oncogenic mutations and are well on their way to becoming SCLC cells. Understanding the molecular mechanisms of these genetic lesions and their effects within lung epithelial cells is of paramount importance, in order to tackle this aggressive and deadly lung cancer. The present review summarizes the current knowledge on p53 and Rb aberrations, their biological significance, and their prospective therapeutic potential, highlighting completed and ongoing clinical trials with agents that target downstream pathways.


Assuntos
Neoplasias Pulmonares , Neoplasias da Retina , Retinoblastoma , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética
10.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791330

RESUMO

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Mecanotransdução Celular , Canais de Cátion TRPP , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Animais , Osso e Ossos/metabolismo , Remodelação Óssea , Regeneração Óssea , Osteócitos/metabolismo
11.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731852

RESUMO

Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo , Quinases raf/genética , Mutação
12.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203845

RESUMO

Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Ácidos Ftálicos , Animais , Feminino , Gravidez , Disruptores Endócrinos/toxicidade , Obesidade/induzido quimicamente , Aumento de Peso , Humanos
13.
Int J Cancer ; 153(12): 1967-1970, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534858

RESUMO

Cancer and brain research have historically followed concrete pathways and converged mostly to studying brain cancer. Nowadays, the fields of neuro-oncology and neuroendocrine regulation of tumorigenesis are both emerging fields of intense research and promising applications. An increasing body of evidence suggests that somatic mutations in cancer-related genes are prevalent in several noncancerous brain disorders. These findings highlighting that certain aspects of cancer development/progression and pathologies of the nervous system share molecular alterations, could assist in elucidating the unique hallmarks of cancer and in cancer drugs repurposing for brain disorders. In so doing, identifying the commonalities in these conditions could be crucial not only for better understanding the basis of these pathologies but also for considering the previously underappreciated and/or neglected possibility of using drugs known to be effective in one type of pathology for the other type.


Assuntos
Neoplasias Encefálicas , Encéfalo , Humanos , Neoplasias Encefálicas/genética , Carcinogênese
14.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298412

RESUMO

The body of knowledge on the molecular mechanisms that drive lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), is continuously growing [...].


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Fatores de Transcrição/genética , Carcinoma de Pequenas Células do Pulmão/genética
15.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069421

RESUMO

Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide [...].


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Neoplasias Colorretais/patologia , Fator de Crescimento Transformador beta , Transdução de Sinais
16.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139269

RESUMO

Pulmonary arterial hypertension (PAH) is a debilitating progressive disease characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling processes that lead to right-ventricular heart failure and, ultimately, death. Although our understanding of its pathophysiology has advanced and several treatment modalities are currently available for the management of PAH patients, none are curative and the prognosis remains poor. Therefore, further research is required to decipher the molecular mechanisms associated with PAH. Angiotensin-converting enzyme 2 (ACE2) plays an important role through its vasoprotective functions in cardiopulmonary homeostasis, and accumulating preclinical and clinical evidence shows that the upregulation of the ACE2/Angiotensin-(1-7)/MAS1 proto-oncogene, G protein-coupled receptor (Mas 1 receptor) signaling axis is implicated in the pathophysiology of PAH. Herein, we highlight the molecular mechanisms of ACE2 signaling in PAH and discuss its potential as a therapeutic target.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Enzima de Conversão de Angiotensina 2/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Peptidil Dipeptidase A/metabolismo , Hipertensão Pulmonar Primária Familiar , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo , Sistema Renina-Angiotensina
17.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768448

RESUMO

Protein arginine methylation is an extensive and functionally significant post-translational modification. However, little is known about its role in differentiation at the systems level. Using stable isotope labeling by amino acids in cell culture (SILAC) proteomics of whole proteome analysis in proliferating or five-day differentiated mouse C2C12 myoblasts, followed by high-resolution mass spectrometry, biochemical assays, and specific immunoprecipitation of mono- or dimethylated arginine peptides, we identified several protein families that were differentially methylated on arginine. Our study is the first to reveal global changes in the arginine mono- or dimethylation of proteins in proliferating myoblasts and differentiated myocytes and to identify enriched protein domains and novel short linear motifs (SLiMs). Our data may be crucial for dissecting the links between differentiation and cancer growth.


Assuntos
Arginina , Proteoma , Camundongos , Animais , Arginina/metabolismo , Espectrometria de Massas/métodos , Proteoma/análise , Diferenciação Celular , Mioblastos/metabolismo , Marcação por Isótopo/métodos
18.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373187

RESUMO

Salivary gland tumors (SGTs) comprise a rare and heterogenous category of benign/malignant neoplasms with progressively increasing knowledge of the molecular mechanisms underpinning their pathogenesis, poor prognosis, and therapeutic treatment efficacy. Emerging data are pointing toward an interplay of genetic and epigenetic factors contributing to their heterogeneity and diverse clinical phenotypes. Post-translational histone modifications such as histone acetylation/deacetylation have been shown to actively participate in the pathobiology of SGTs, further suggesting that histone deacetylating factors (HDACs), selective or pan-HDAC inhibitors (HDACis), might present effective treatment options for these neoplasms. Herein, we describe the molecular and epigenetic mechanisms underlying the pathology of the different types of SGTs, focusing on histone acetylation/deacetylation effects on gene expression as well as the progress of HDACis in SGT therapy and the current status of relevant clinical trials.


Assuntos
Neoplasias Encefálicas , Neoplasias das Glândulas Salivares , Humanos , Histonas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Acetilação
19.
J Cell Mol Med ; 26(5): 1699-1709, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35106909

RESUMO

The mechanobiological aspects of glioblastoma (GBM) pathogenesis are largely unknown. Polycystin-1 (PC1) is a key mechanosensitive protein which perceives extracellular mechanical cues and transforms them into intracellular biochemical signals that elicit a change in cell behaviour. The aim of the present study was to investigate if and how PC1 participates in GBM pathogenesis under a mechanically induced microenvironment. Therefore, we subjected T98G GBM cells to continuous hydrostatic pressure (HP) and/or PC1 blockade and evaluated their effect on cell behaviour, the activity of signalling pathways and the expression of mechano-induced transcriptional regulators and markers associated with properties of cancer cells. According to our data, PC1 and HP affect GBM cell proliferation, clonogenicity and migration; the diameter of GBM spheroids; the phosphorylation of mechanistic target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK); the protein expression of transcription cofactors YES-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ); and the mRNA expression of markers related to anti-apoptosis, apoptosis, angiogenesis, epithelial to mesenchymal transition (EMT) and proliferation. Together, our in vitro results suggest that PC1 plays an important role in GBM mechanobiology.


Assuntos
Glioblastoma , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Glioblastoma/patologia , Humanos , Pressão Hidrostática , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
20.
J Cell Mol Med ; 26(8): 2428-2437, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35285136

RESUMO

Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens' life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin-1 (PC1) and polycystin-2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non-syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti-PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)-AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non-syndromic craniosynostosis.


Assuntos
Craniossinostoses , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células , Criança , Craniossinostoses/genética , Craniossinostoses/metabolismo , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA