Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(7): 189, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353664

RESUMO

Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.


Assuntos
Antineoplásicos , Receptores de IgG , Animais , Receptores de IgG/genética , Macaca mulatta/metabolismo , Antígenos CD40 , Ligante de CD40 , Imunoglobulina G
2.
Mol Biol Evol ; 39(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880574

RESUMO

Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.


Assuntos
Imunidade Inata , Vírus da Influenza A , Animais , Aves , Genômica , Sistema Imunitário , Imunidade Inata/genética , Vírus da Influenza A/genética
3.
Mol Ecol ; 26(10): 2783-2795, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247584

RESUMO

The identification of thousands of variants across the genomes and their accurate genotyping are crucial for estimating the genetic parameters needed to address a host of molecular ecological and evolutionary questions. With rapid advances of massively parallel high-throughput sequencing technologies, several methods have recently been developed to access genomewide data on population variation. One of the most successful and widely used techniques relies on the combination of restriction enzymes and sequencing-by-synthesis: restriction-site-associated DNA sequencing (RADSeq). We developed a new, more time- and cost-efficient double-digest RAD paired-end protocol (quaddRAD) that simplifies and speeds up the identification of PCR duplicates and permits large-scale multiplexing. Assessing its performance on a technical data set, we also applied the quaddRAD method on population samples of a Neotropical cichlid fish lineage (Archocentrus centrarchus) to assess its genetic structure and demographic history. While we identified allopatric interlake genetic divergence, most likely driven by drift, no signature of sympatric divergence was detected. This differs from what has been observed in the clade of Midas cichlids (Amphilophus citrinellus spp.), another cichlid lineage that inhabits the same lakes and shares a similar demographic history, but has evolved into small-scale adaptive radiations via sympatric speciation. We demonstrate that quaddRAD is a robust and efficient method for genotyping a massive number and widely overlapping set of loci with high accuracy. Furthermore, the results on A. centrarchus open new research avenues providing an ideal system to investigate genome-level mechanisms that could alter the speciation potential of different but closely related cichlid lineages.


Assuntos
Ciclídeos/classificação , Especiação Genética , Genética Populacional/métodos , Reação em Cadeia da Polimerase/métodos , Animais , Evolução Biológica , Genótipo , Técnicas de Genotipagem , Simpatria
4.
Front Immunol ; 15: 1427100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983847

RESUMO

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Assuntos
Inflamação , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/imunologia , Inflamação/imunologia , Humanos , Interleucina-18/metabolismo , Interleucina-18/imunologia , Modelos Animais de Doenças , COVID-19/imunologia , Camundongos Endogâmicos C57BL , Síndrome de Ativação Macrofágica/imunologia , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA