Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 43(12): 2091-2101, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135709

RESUMO

The role of constitutional genetic defects in idiopathic pulmonary fibrosis (IPF) is increasingly appreciated. Monogenic disorders associated with IPF affect two pathways: telomere maintenance, accounting for approximately 10% of all patients with IPF, and surfactant biology, responsible for 1%-3% of cases and often co-occurring with lung cancer. We examined the prevalence of rare variants in five surfactant-related genes, SFTPA1, SFPTA2, SFTPC, ABCA3, and NKX2-1, that were previously linked to lung disease in whole genome sequencing data from 431 patients with IPF. We identified functionally deleterious rare variants in SFTPA2 with a prevalence of 1.3% in individuals with and without a family history of IPF. All individuals had no personal history of lung cancer, but substantial bronchiolar metaplasia was noted on lung explants and biopsies. Five patients had novel missense variants in NKX2-1, but the contribution to disease is unclear. In general, patients were younger and had longer telomeres compared with the majority of patients with IPF suggesting that these features may be useful for identifying this subset of patients in the clinic. These data suggest that SFTPA2 variants may be more common in unselected IPF cohorts and may manifest in the absence of personal/family history of lung cancer or IPF.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Surfactantes Pulmonares , Humanos , Tensoativos , Fibrose Pulmonar Idiopática/genética , Mutação de Sentido Incorreto , Neoplasias Pulmonares/genética
2.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824190

RESUMO

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Assuntos
Linhagem , Complexo Shelterina , Telomerase , Proteínas de Ligação a Telômeros , Telômero , Humanos , Telômero/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Complexo Shelterina/metabolismo , Telomerase/genética , Telomerase/metabolismo , Masculino , Feminino , Homeostase do Telômero/genética , Sequência de Bases , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA