Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7902): 631-636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322249

RESUMO

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

2.
Mol Biol Rep ; 50(1): 267-277, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331742

RESUMO

Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.


Assuntos
Mastocitoma , Mitógenos , Camundongos , Animais , Glutamina , RNA Mensageiro/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidores Enzimáticos/farmacologia , Triptofano Hidroxilase/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-34736264

RESUMO

INTRODUCTION: Decellularized larynges could be used as scaffolds to regenerate the larynx. The purpose of this study was to establish a perfusion decellularization protocol to produce a 3-dimensional whole laryngeal extracellular matrix (ECM) scaffold in a rabbit model. METHODS: The larynges of 20 rabbits assigned to the study group were harvested and decellularized using a perfusion decellularization protocol, while the larynges of 10 rabbits in the control group were harvested and untreated. Macroscopic and microscopic morphological analyses, a molecular analysis, a cellular content analysis, and scanning electron microscopy were performed. RESULTS: A histological analysis showed the absence of cellular components, the presence of the ECM, and an intact cartilage structure filled with chondrocytes. The mean total DNA amounts of the native larynx, decellularized larynx, and decellularized cartilage-free larynx were 1,826.40, 434.70, and 41.40 µg/µL, respectively; those for the decellularized larynx and decellularized cartilage-free larynx were significantly lower (p < 0.001 and p < 0.001, respectively). The total amount of DNA in the decellularized sample was significantly lower compared to that in the native sample, at 57.2% in cartilage (p < 0.001), 2.4% in the thyroid gland (p < 0.001), 2.7% in muscle (p < 0.001), 1.6% in vessels (p < 0.001), and 4.8% in the vocal cords (p < 0.001). CONCLUSION: Our perfusion decellularization protocol is feasible and reproducible to produce a 3-dimensional whole laryngeal ECM scaffold in a rabbit.


Assuntos
Laringe , Alicerces Teciduais , Animais , Matriz Extracelular/química , Perfusão , Coelhos , Regeneração
4.
Appl Microbiol Biotechnol ; 104(8): 3245-3252, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076775

RESUMO

With growing interest in alternative fuels to minimize carbon and particle emissions, research continues on the production of lignocellulosic ethanol and on the development of suitable yeast strains. However, great diversities and continued technical advances in pretreatment methods for lignocellulosic biomass complicate the evaluation of developed yeast strains, and strain development often lags industrial applicability. In this review, recent studies demonstrating developed yeast strains with lignocellulosic biomass hydrolysates are compared. For the pretreatment methods, we highlight hydrothermal pretreatments (dilute acid treatment and autohydrolysis), which are the most commonly used and effective methods for lignocellulosic biomass pretreatment. Rather than pretreatment conditions, the type of biomass most strongly influences the composition of the hydrolysates. Metabolic engineering strategies for yeast strain development, the choice of xylose-metabolic pathway, adaptive evolution, and strain background are highlighted as important factors affecting ethanol yield and productivity from lignocellulosic biomass hydrolysates. A comparison of the parameters from recent studies demonstrating lignocellulosic ethanol production provides useful information for future strain development.


Assuntos
Biomassa , Etanol/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Hidrólise , Engenharia Metabólica/métodos , Redes e Vias Metabólicas
5.
Mediators Inflamm ; 2018: 4267158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743810

RESUMO

Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-ß1 (TGF-ß1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson's trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-ß1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Feminino , Coelhos , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual , Fator de Crescimento Transformador beta1/metabolismo
6.
Cell Physiol Biochem ; 38(1): 83-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26741828

RESUMO

BACKGROUND/AIMS: Although tonsil-mesenchymal stem cells (T-MSCs) have been studied as a new autologous or homologous source of MSCs, research on specific markers of MSCs and localization for purified T-MSC isolation has not yet been reported. This study investigates the expression of W5C5 (SUSD2) in tonsil stromal cells and the colony-forming ability and differentiation potential of W5C5+ cells to determine the usefulness of W5C5+ MSCs as a marker that can be used for the purification of T-MSCs. In addition, the location of W5C5+ cells expressed in the tonsil tissues is examined. METHODS: T-MSCs were isolated from the tonsillar tissues of 12 patients undergoing tonsillectomy. The colony-forming ability, surface markers, proliferation potential, and differentiation capacities of purified W5C5+ MSCs, W5C5- MSCs, and unselected T-MSCs were evaluated. The location of the W5C5+ cells in the tonsillar tissues was also investigated by immunohistochemistry. RESULTS: W5C5 was expressed in 2.5±0.4% of fresh human tonsil stromal cells. W5C5+ cells formed many colonies, but W5C5- cells did not form any colonies. The colony-forming number of W5C5+ cells (74.4 ± 9.8) was significantly higher than that of unselected tonsil stromal cells (23.6 ± 3.7). However, the differences in proliferation potential, surface marker expression, and differentiation potential between W5C5+ T-MSCs and unselected T-MSCs were not significant. W5C5+ cells were identified in the perivascular area around the blood vessels. CONCLUSION: W5C5+ T-MSCs possessed typical MSC properties with high colony-forming efficiency, and niches of W5C5+ T-MSCs were located in the perivascular area of tonsil tissues. These findings suggest that W5C5 is a useful single marker for the isolation of purified T-MSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Adolescente , Antígenos CD/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Humanos , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo
7.
Cell Physiol Biochem ; 36(1): 85-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25924984

RESUMO

OBJECTIVES: Human mesenchymal stem cells (MSCs) are efficacious in various cellular therapeutic applications and have been isolated from several tissues. Recent studies have reported that human tonsil tissue contains a new source of progenitor cells, potentially applicable for cell-based therapies. Information about the effects of donor age, long-term passage and cryopreservation are essential for clinical applications and cell-based therapies. Therefore, the authors investigated how the morphology, cell-surface markers, proliferation potential and differentiation capacity of tonsil-derived MSCs (T-MSCs) were affected by donor age, long-term passage, and cryopreservation. MATERIALS AND METHODS: T-MSCs were isolated from tonsillar tissue of 20 patients undergoing tonsillectomy. Authors evaluated the effects of donor-age, long-term passage, and cryopreservation on the morphology, surface markers, proliferation potential and differentiation capacities of T-MSCs. RESULTS: T-MSCs exhibited a fibroblast-like, spindle-shaped appearance. There were no significant morphological differences according to donor age, long-term passage or cryopreservation. T-MSCs isolated from donors of various ages were positive for markers CD90, CD44, and CD73, but negative for CD45, CD31, and HLA-DR. There were no significant differences in the expression of positive and negative surface markers as a function of donor age, long-term passage and cryopreservation. T-MSCs from different donor age groups showed similar proliferation potentials after passage 2. After long-term passage and cryopreservation, there were no significant morphological differences. Cryopreservation did not affect the proliferation potential of T-MSCs, but there was a significant decrease in the proliferation potential in long-term passage T-MSCs (passage 15). The effect of donor age, long-term passage and cryopreservation on the in vitro adipogenic, osteogenic, and chondrogenic differentiation potential of T-MSCs was not significant. CONCLUSION: The effect of donor age, long-term passage culture, and cryopreservation on T-MSC properties are negligible, except for the proliferation capacity of long-term cultured T-MSCs. Therefore, T-MSCs are considered to be promising MSCs that can be used as future alternative sources for autologous or allogenic MSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação/métodos , Células-Tronco Mesenquimais/fisiologia , Tonsila Palatina/citologia , Doadores de Tecidos , Fatores Etários , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Humanos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Tonsila Palatina/cirurgia , Fatores de Tempo
8.
Mediators Inflamm ; 2014: 436476, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25246732

RESUMO

Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-ß) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-ß, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-ß, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production.


Assuntos
Tecido Adiposo/citologia , Asma/imunologia , Asma/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Dinoprostona/metabolismo , Feminino , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco , Linfócitos T Reguladores/citologia , Células Th2/metabolismo
9.
Bioresour Technol ; 393: 130158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070579

RESUMO

Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials.


Assuntos
Citrus , Saccharomyces cerevisiae , Açúcares Ácidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Citrus/metabolismo , NAD/metabolismo , Pectinas , Engenharia Metabólica/métodos
10.
Cell Physiol Biochem ; 31(4-5): 513-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23572135

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that originally derived from bone marrow. Clinical use of bone marrow-derived MSC is difficult due to morbidity and low MSC abundance and isolation efficiency. Recently, MSCs have been isolated from various adult tissues. Here we report the isolation of adenoid tissue-derived MSCs (A-MSCs) and their characteristics. METHODS: We compared the surface markers, morphologies, and differentiation and proliferation capacities of previously established tonsil-derived MSCs (T-MSCs) and bone marrow-derived MSCs (BM-MSCs) with cells isolated from adenoid tissue. The immunophenotype of A-MSCs was investigated upon interferon (IFN)-γ stimulation. RESULTS: A-MSCs, T-MSCs, and BM-MSCs showed negative CD45, CD31 HLA-DR, CD34, CD14, CD19 and positive CD 90, CD44, CD73, CD105 expression. A-MSCs were fibroblast-like, spindle-shaped non-adherent cells, similar to T-MSCs and BM-MSCs. Adipogenesis was observed in A-MSCs by the formation of lipid droplets after Oil Red O staining. Osteogenesis was observed by the formation of the matrix mineralization in Alizarin Red staining. Chondrogenesis was observed by the accumulation of sulfated glycosaminoglycan-rich matrix in collagen type II staining. These data were similar to those of T-MSCs and BM-MSCs. Expression of marker genes (i.e., adipogenesis; lipoprotein lipase, proliferator-activator receptor-gamma, osteogenesis; osteocalcin, alkaline phasphatase, chondrogenesis; aggrecan, collagen type II α1) in A-MSCs were not different from those in T-MSCs and BM-MSCs. CONCLUSIONS: A-MSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface markers, and immunogeneity. Therefore, A-MSCs fulfill the definition of MSCs and represent an alternate source of MSCs.


Assuntos
Tonsila Faríngea/citologia , Células-Tronco Mesenquimais/citologia , Adipogenia , Antígenos de Superfície/metabolismo , Células da Medula Óssea/citologia , Proliferação de Células , Células Cultivadas , Condrogênese , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Osteogênese
11.
Phys Chem Chem Phys ; 15(6): 2125-30, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23287879

RESUMO

Electrocatalysts for hydrogen oxidation reactions (HORs) are the key to renewable-energy technologies including fuel cells, hydrogen pumps, and water splitting. Despite the significant technological interest and tremendous efforts that have been made, development of hydrogen electrode catalysts with high activity at low cost remains a great challenge. Here, we report the preparation, characterization, and electrochemical properties of a hybrid material composed of Pd nanocrystals grown on spontaneously oxidized WC as a high-performance catalyst for the HOR. The Pd/WC hybrid exhibits enhanced catalytic activity compared to a carbon supported Pd (Pd/C) catalyst, making it a Pt-free, effective catalyst for the HOR. The remarkable catalytic activity arises from synergistic ligand effects between Pd and WC.

12.
Phys Chem Chem Phys ; 15(40): 17079-83, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23970167

RESUMO

Pt-skin surfaces were successfully fabricated by the chemical deposition of additional Pt on corrugated Pt-Ni nanoparticles with Pt-skeleton surfaces. Compared to the Pt-skin formed by heat annealing, the chemically-tuned Pt-skin had a higher Pt coordination number and surface crystallinity, which resulted in superior ORR activity and durability.

13.
Langmuir ; 28(7): 3664-70, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22276903

RESUMO

Highly dispersed Pd nanoparticles were prepared by borohydride reduction of Pd(acac)(2) in 1,2-propanediol at an elevated temperature. They were uniformly dispersed on carbon black without significant aggregation. X-ray diffraction showed that carbons from the Pd precursor dissolved in Pd, increasing its lattice parameter. A modified reduction process was tested to remove the carbon impurities. Carbon removal greatly enhanced catalytic activity toward the oxygen reduction reaction. It also generated an inconsistency between the electronic modifications obtained from X-ray photoelectron spectroscopy and the electrochemical method. CO displacement measurements showed that the formation of Pd-C bonds decreased the work function of the surface Pd atoms.

14.
Membranes (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35207079

RESUMO

The purpose of this study is to establish a practical simulation model based on mass balance, mass transport equations and equilibrium equation between gas and liquid phases across a porous membrane in membrane contactor process in order to predict the separation behavior by the gassing process of gas mixture in membrane contactor. The established simulation model was verified by comparison between the simulated values and real process values in the separation of CH4/CO2 mixture, showing an excellent agreement between them. The parameter R-value in the model, which is a kind of the permeability of permeant across porous membrane, has been determined by fitting a numerical solution of the model equation to the experimental data to obtain a practical value of the parameter. A parametric study on the gassing process of N2/CO2 mixture in membrane contactor was made with the help of the practical simulation model to investigate the effects of operation parameters on separation performance and to characterize the separation behavior of membrane contactor process. A series of simulations of the separation of N2/CO2 mixture in membrane contactor were conducted, and the optimization on the membrane process was discussed to maximize the separation performance in terms of N2 recovery percent in retentate and CO2 permeation rate. It was observed from the analysis of the result of the simulation that liquid flow rate has a negative effect on N2 recovery percent in retentate but a positive effect on the separation of CO2, while R-value affects the separation performance in the other way. It is confirmed in this study that the developed simulation can be used as a tool to optimize the parameters, i.e., feed gas pressure, liquid flow rate and R-value to maximize the separation performance.

15.
Bioresour Technol ; 323: 124603, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33406467

RESUMO

In the quest to reduce global food loss and waste, fruit processing wastes, particularly citrus peel waste (CPW), have emerged as a promising and sustainable option for biorefinery without competing with human foods and animal feeds. CPW is largely produced and, as recent studies suggest, has the industrial potential of biological valorization into fuels and chemicals. In this review, the promising aspects of CPW as an alternative biomass were highlighted, focusing on its low lignin content. In addition, specific technical difficulties in fermenting CPW are described, highlighting that citrus peel is high in pectin that consist of non-fermentable sugars, mainly galacturonic acid. Last, recent advances in the metabolic engineering of yeast and other microbial strains that ferment CPW-derived sugars to produce value-added products, such as ethanol and mucic acid, are summarized. For industrially viable CPW-based biorefinery, more studies are needed to improve fermentation efficiency and to diversify product profiles.


Assuntos
Citrus , Animais , Biomassa , Etanol , Fermentação , Humanos , Pectinas
16.
Front Bioeng Biotechnol ; 9: 654177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842449

RESUMO

Being a microbial host for lignocellulosic biofuel production, Saccharomyces cerevisiae needs to be engineered to express a heterologous xylose pathway; however, it has been challenging to optimize the engineered strain for efficient and rapid fermentation of xylose. Deletion of PHO13 (Δpho13) has been reported to be a crucial genetic perturbation in improving xylose fermentation. A confirmed mechanism of the Δpho13 effect on xylose fermentation is that the Δpho13 transcriptionally activates the genes in the non-oxidative pentose phosphate pathway (PPP). In the current study, we found a couple of engineered strains, of which phenotypes were not affected by Δpho13 (Δpho13-negative), among many others we examined. Genome resequencing of the Δpho13-negative strains revealed that a loss-of-function mutation in GCR2 was responsible for the phenotype. Gcr2 is a global transcriptional factor involved in glucose metabolism. The results of RNA-seq confirmed that the deletion of GCR2 (Δgcr2) led to the upregulation of PPP genes as well as downregulation of glycolytic genes, and changes were more significant under xylose conditions than those under glucose conditions. Although there was no synergistic effect between Δpho13 and Δgcr2 in improving xylose fermentation, these results suggested that GCR2 is a novel knockout target in improving lignocellulosic ethanol production.

17.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668920

RESUMO

Polystyrene-based polymers with variable molecular weights are prepared by radical polymerization of styrene. Polystyrene is grafted with bromo-alkyl chains of different lengths through Friedel-Crafts acylation and quaternized to afford a series of hydroxide-ion-conducting ionomers for the catalyst binder for the membrane electrode assembly in anion-exchange membrane fuel cells (AEMFCs). Structural analyses reveal that the molecular weight of the polystyrene backbone ranges from 10,000 to 63,000 g mol-1, while the ion exchange capacity of quaternary-ammonium-group-bearing ionomers ranges from 1.44 to 1.74 mmol g-1. The performance of AEMFCs constructed using the prepared electrode ionomers is affected by several ionomer properties, and a maximal power density of 407 mW cm-2 and a durability exceeding that of a reference cell with a commercially available ionomer are achieved under optimal conditions. Thus, the developed approach is concluded to be well suited for the fabrication of next-generation electrode ionomers for high-performance AEMFCs.

18.
Polymers (Basel) ; 13(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073878

RESUMO

The purpose of this study was to investigate the effect of the aliphatic moiety in the sulfonated poly(arylene ether sulfone) (SPAES) backbone. A new monomer (4,4'-dihydroxy-1,6-diphenoxyhexane) was synthesized and polymerized with other monomers to obtain partially alkylated SPAESs. According to differential scanning calorimetry analysis, the glass transition temperature (Tg) of these polymers ranged from 85 to 90 °C, which is 100 °C lower than that of the fully aromatic SPAES. Due to the low Tg values obtained for the partially alkylated SPAESs, it was possible to prepare a hydrocarbon electrolyte membrane-based membrane electrode assembly (MEA) with Nafion® binder in the electrode through the use of a decal transfer method, which is the most commercially suitable system to obtain an MEA of proton exchange membrane fuel cells (PEMFCs). A single cell prepared using this partially alkylated SPAES as an electrolyte membrane exhibited a peak power density of 539 mW cm-2.

19.
Stem Cells ; 27(1): 259-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18832595

RESUMO

Adipose tissue-derived stem cells (ASCs) exhibit immunosuppressive effects in allogeneic transplantation. However, there is no report that evaluates the in vivo immune-modulating effect of ASCs in an experimental allergic rhinitis (AR) model. We investigated whether ASCs migrate to the nasal mucosa in an AR mouse model and evaluated the immune-modulating effect of ASCs in the AR mouse model. Cultured ASCs (2 x 10(6)) were injected i.v. before the first allergen challenge in the AR mouse model. Migration of ASCs to the nasal mucosa was evaluated by immunofluorescence. The immunomodulatory effects of ASCs were evaluated by nasal symptoms, histology, serum ovalbumin (OVA)-specific antibody, and the cytokine profile of the spleen. ASCs migrated to the nasal mucosa in the AR mouse model. ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation in the nasal mucosa. ASCs significantly decreased the serum allergen-specific IgE level and the IgG(1)/IgG(2a) ratio and significantly increased the IgG(2a) level in the AR mouse model. ASCs inhibited interleukin (IL)-4 and IL-5 production from OVA-incubated splenocytes, but enhanced interferon-gamma production. In conclusion, ASCs can migrate to the nasal mucosa in the AR mouse model and inhibit eosinophilic inflammation partly via shifting to a T-helper 1 (Th1) from a Th2 immune response to allergens.


Assuntos
Tecido Adiposo/citologia , Fatores Imunológicos/imunologia , Rinite Alérgica Perene/imunologia , Células-Tronco/imunologia , Animais , Formação de Anticorpos , Contagem de Células , Diferenciação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos , Feminino , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunofenotipagem , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Ovalbumina/imunologia , Rinite Alérgica Perene/sangue , Baço/metabolismo
20.
Nucleic Acids Res ; 36(8): 2739-55, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18367475

RESUMO

Telomeres are protein-DNA elements that are located at the ends of linear eukaryotic chromosomes. In concert with various telomere-binding proteins, they play an essential role in genome stability. We determined the structure of the DNA-binding domain of NgTRF1, a double-stranded telomere-binding protein of tobacco, using multidimensional NMR spectroscopy and X-ray crystallography. The DNA-binding domain of NgTRF1 contained the Myb-like domain and C-terminal Myb-extension that is characteristic of plant double-stranded telomere-binding proteins. It encompassed amino acids 561-681 (NgTRF1(561-681)), and was composed of 4 alpha-helices. We also determined the structure of NgTRF1(561-681) bound to plant telomeric DNA. We identified several amino acid residues that interacted directly with DNA, and confirmed their role in the binding of NgTRF1 to telomere using site-directed mutagenesis. Based on a structural comparison of the DNA-binding domains of NgTRF1 and human TRF1 (hTRF1), NgTRF1 has both common and unique DNA-binding properties. Interaction of Myb-like domain with telomeric sequences is almost identical in NgTRF1(561-681) with the DNA-binding domain of hTRF1. The interaction of Arg-638 with the telomeric DNA, which is unique in NgTRF1(561-681), may provide the structural explanation for the specificity of NgTRF1 to the plant telomere sequences, (TTTAGGG)(n).


Assuntos
DNA de Plantas/química , Modelos Moleculares , Proteínas de Plantas/química , Telômero/química , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteínas de Arabidopsis/química , Sítios de Ligação , Cristalografia por Raios X , DNA de Plantas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA