Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 16(6): 1044-1056, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191109

RESUMO

This article presents a CMOS microelectrode array (MEA) system with a reconfigurable sub-array multiplexing architecture using the time-division multiplexing (TDM) technique. The system consists of 24,320 TiN electrodes with 17.7 µm-pitch pixels and 380 column-parallel readout channels including a low-noise amplifier, a programmable gain amplifier, and a 10-b successive approximation register analog to digital converter. Readout channels are placed outside the pixel for high spatial resolution, and a flexible structure to acquire neural signals from electrodes selected by configuring in-pixel memory is realized. In this structure, a single channel can handle 8 to 32 electrodes, guaranteeing a temporal resolution from 5 kS/s to 20 kS/s for each electrode. A 128 × 190 MEA system was fabricated in a 110-nm CMOS process, and each readout channel consumes 81 µW at 1.5-V supply voltage featuring input-referred noise of 1.48 µVrms without multiplexing and 5.4 µVrms with multiplexing at the action-potential band (300 Hz-10 kHz).


Assuntos
Amplificadores Eletrônicos , Microeletrodos , Potenciais de Ação
2.
Nano Lett ; 10(9): 3517-23, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20707383

RESUMO

Although writing was the first human process for communication, it may now become the main process in the electronics industry, because in the industry the programmability as an inherent property is a necessary requirement for next-generation electronics. As an effort to open the era of writing electronics, here we show the feasibility of the direct printing of a high-performance inorganic single crystalline semiconductor nanowire (NW) Schottky diode (SD), including Schottky and Ohmic contacts in series, using premetallization and wrapping with metallic nanofoil. To verify the feasibility of our process, SDs made of Al-premetalized ZnO NWs and plain ZnO NWs were compared with each other. Even with cold direct printing, the Al-premetalized ZnO NW SD showed higher performance, specifically 1.52 in the ideality factor and 1.58 x 10(5) in its rectification ratio.

3.
ACS Appl Mater Interfaces ; 8(11): 7205-11, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26919321

RESUMO

We introduce a microscale soft pattering (MSP) route utilizing contact printing of chemically inert sub-nanometer thick low molecular weight (LMW) poly(dimethylsiloxane) (PDMS) layers. These PDMS layers serve as a release agent layer between the n-type Ohmic metal and metal oxide semiconductors (MOSs) and provide a layer that protects the MOS from water in the surrounding environment. The feasibility of our MSP route was experimentally demonstrated by fabricating solution processable In2O3, IZO, and IGZO TFTs with aluminum (Al), a typical n-type Ohmic metal. We have demonstrated patterning gaps as small as 13 µm. The TFTs fabricated using MSP showed higher field-effect-mobility and lower hysteresis in comparison with those made using conventional photolithography.

4.
ACS Appl Mater Interfaces ; 8(18): 11564-74, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27096706

RESUMO

High-performance, solution-processed transparent and flexible zinc oxide (ZnO) nanorods (NRs)-based single layer network structured thin film transistors (TFTs) were developed on polyethylene terephthalate (PET) substrate at 100 °C. Keeping the process-temperature under 100 °C, we have improved the device performance by introducing three low temperature-based techniques; regrowing ZnO to fill the void spaces in a single layer network of ZnO NRs, passivating the back channel with polymer, and adopting ZrO2 as the high-k dielectric. Notably, high-k amorphous ZrO2 was synthesized and deposited using a novel method at an unprecedented temperature of 100 °C. Using these methods, the TFTs exhibited a high mobility of 1.77 cm(2)/V·s. An insignificant reduction of 2.18% in mobility value after 3000 cycles of dynamic bending at a radius of curvature of 20 mm indicated the robust mechanical nature of the flexible ZnO NRs SLNS TFTs.

5.
ACS Appl Mater Interfaces ; 7(8): 4494-503, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25664940

RESUMO

A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (Jleak) of 4.38 × 10(-8) A/cm(2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (Ion/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices.

6.
Chem Commun (Camb) ; 51(27): 5844-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25716292

RESUMO

We introduce a siloxane chain-based hydrophobizer that exhibits superior thermal and chemical stability compared to the conventional hydrophobizing silane agent under conditions of over 300 °C and pH 2-13. To demonstrate the capability of the siloxane chain-based hydrophobizer to serve as a highly robust chemical surface modifier, we present two applications: the formation of fine metal nanoparticles with a narrow size distribution by thermal aggregation of a metal thin film and the selective deposition of a ruthenium thin film by atomic layer deposition.


Assuntos
Dimetilpolisiloxanos/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Rutênio/química , Prata/química , Adsorção , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Tamanho da Partícula
7.
ACS Appl Mater Interfaces ; 5(2): 410-7, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23267443

RESUMO

We demonstrated solution-processed thin film transistors on a peroxo-zirconium oxide (ZrO(2)) dielectric with a maximum temperature of 350 °C. The formation of ZrO(2) films was investigated by TG-DTA, FT-IR, and XPS analyses at various temperatures. We synthesized a zirconium oxide solution by adding hydrogen peroxide (H(2)O(2)). The H(2)O(2) forms peroxo groups in the ZrO(2) film producing a dense-amorphous phase and a smooth surface film. Because of these characteristics, the ZrO(2) film successfully blocked leakage current even in annealing at 300 °C. Finally, to demonstrate that the ZrO(2) film is dielectric, we fabricated thin-film transistors (TFTs) with a solution-processed channel layer of indium zinc oxide (IZO) on ZrO(2) films at 350 °C. These TFTs had a mobility of 7.21 cm(2)/(V s), a threshold voltage (V(th)) of 3.22 V, and a V(th) shift of 1.6 V under positive gate bias stress.

8.
ACS Appl Mater Interfaces ; 5(7): 2585-92, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23461268

RESUMO

Herein, we report a novel and easy strategy for fabricating solution-processed metal oxide thin-film transistors by controlling the dielectric constant of H2O through manipulation of the metal precursor solution temperature. As a result, indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated from IZO solution at 4 °C can be operated after annealing at low temperatures (∼250 °C). In contrast, IZO TFTs fabricated from IZO solutions at 25 and 60 °C must be annealed at 275 and 300 °C, respectively. We also found that IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility of 12.65 cm2/(V s), whereas the IZO TFTs fabricated from IZO precursor solutions at 25 and 60 °C had field-effect mobility of 5.39 and 4.51 cm2/(V s), respectively, after annealing at 350 °C. When the IZO precursor solution is at 4 °C, metal cations such as indium (In3+) and zinc ions (Zn2+) can be fully surrounded by H2O molecules, because of the higher dielectric constant of H2O at lower temperatures. These chemical complexes in the IZO precursor solution at 4 °C are advantageous for thermal hydrolysis and condensation reactions yielding a metal oxide lattice, because of their high potential energies. The IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility because of the formation of many metal-oxygen-metal (M-O-M) bonds under these conditions. In these bonds, the ns-orbitals of the metal cations overlap each other and form electron conduction pathways. Thus, the formation of a high proportion of M-O-M bonds in the IZO thin films is advantageous for electron conduction, because oxide lattices allow electrons to travel easily through the IZO.

9.
ACS Appl Mater Interfaces ; 5(16): 8067-75, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23883390

RESUMO

We developed a solution-processed indium oxide (In2O3) thin-film transistor (TFT) with a boron-doped peroxo-zirconium (ZrO2:B) dielectric on silicon as well as polyimide substrate at 200 °C, using water as the solvent for the In2O3 precursor. The formation of In2O3 and ZrO2:B films were intensively studied by thermogravimetric differential thermal analysis (TG-DTA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT IR), high-resolution X-ray diffraction (HR-XRD), and X-ray photoelectron spectroscopy (XPS). Boron was selected as a dopant to make a denser ZrO2 film. The ZrO2:B film effectively blocked the leakage current at 200 °C with high breakdown strength. To evaluate the ZrO2:B film as a gate dielectric, we fabricated In2O3 TFTs on the ZrO2:B dielectrics with silicon substrates and annealed the resulting samples at 200 and 250 °C. The resulting mobilities were 1.25 and 39.3 cm(2)/(V s), respectively. Finally, we realized a flexible In2O3 TFT with the ZrO2:B dielectric on a polyimide substrate at 200 °C, and it successfully operated a switching device with a mobility of 4.01 cm(2)/(V s). Our results suggest that aqueous solution-processed In2O3 TFTs on ZrO2:B dielectrics could potentially be used for low-cost, low-temperature, and high-performance flexible devices.


Assuntos
Índio/química , Transistores Eletrônicos , Zircônio/química , Silício/química , Temperatura
10.
Adv Mater ; 25(10): 1408-14, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23280963

RESUMO

A compartmentalized multidomain alignment state of a layer of liquid crystal display is achieved using an ultrathin, highly transparent, and ultrafast-responsive alignment layer fabricated by a simple method. The ultrathin alignment layer consists of a self-assembled oligomer layer of poly(dimethylsiloxane) (PDMS) formed by utilizing the oligomers that diffuse out from a PDMS elastomer stamp during a contact printing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA