Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 41(1): 29-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29311481

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is frequently observed in obese and aged individuals. Peroxisome proliferator-activated receptors (PPARs) play a role in regulating hepatic lipid accumulation, a hallmark of NAFLD development. A PPAR pan agonist, 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013) has been shown to prevent fatty liver formation and insulin resistance in obese mice (db/db) model. However, the beneficial effects of MHY2013 in aged model remain unknown. In this study, we investigated whether MHY2013 alleviates hepatic lipid accumulation in aged Sprague-Dawley (SD) rats. We confirmed that MHY2013 increased the activities of three PPAR subtypes in HepG2 cells using luciferase assay. When administered orally in aged SD rats, MHY2013 markedly decreased the hepatic triglyceride levels without changes in body weight. Regarding underlying mechanisms, MHY2013 increased the mRNA levels of lipid oxidation-related genes, including carnitine palmitoyltransferase 1 (CPT1) and peroxisomal acyl-CoA oxidase 1 (ACOX1), without apparent change in the mRNA expression of lipogenesis-related genes. Furthermore, MHY2013 significantly increased systemic fibroblast growth factor 21 (FGF21) and adiponectin levels and suppressed inflammatory mRNA expression in the liver. In conclusion, MHY2013 alleviated age-related hepatic lipid accumulation, in part by upregulating ß-oxidation signaling and suppressing inflammation in the liver. Therefore, MHY2013 is a potential pharmaceutical agent for treating age-related hepatic lipid accumulation.


Assuntos
Envelhecimento/metabolismo , Benzotiazóis/farmacologia , Citocinas/genética , Ácidos Graxos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Propionatos/farmacologia , Triglicerídeos/metabolismo , Administração Oral , Animais , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/sangue , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Ratos Sprague-Dawley , Triglicerídeos/sangue
2.
Molecules ; 23(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115876

RESUMO

This study investigated the effects of 2-(4-(5-chlorobenzo[d]thiazol-2-yl)phenoxy)-2,2-difluoroacetic acid (MHY3200) on high-fat diet (HFD)-induced hepatic lipid accumulation and inflammation. The measurement of peroxisome proliferator-activated receptor (PPAR)α activity by using a luciferase assay indicated that MHY3200 was more potent than a known PPARα agonist, WY14643, in AC2F cells. Six-month-old male SD rats were fed chow or HFD for 1 month, and after, with or without added MHY3200 (1 or 2 mg/kg/day) for 4 weeks. The oral administration of MHY3200 caused a significant decrease in serum triglyceride (TG), glucose, alanine aminotransferase, and insulin, as well as a slight decrease in the level of free fatty acid and aspartate transaminase. No weight gain was detected when compared with HFD rats, and hepatic TG content was also attenuated by the administration of MHY3200. Furthermore, phosphorylation of the ER stress marker, inositol-requiring kinase 1 and its downstream gene, c-Jun N-terminal kinase, in addition to serine phosphorylation of insulin receptor substrate 1 were suppressed by MHY3200. Consistent with these results, MHY3200 administration reduced the levels of activation of protein-1, cyclooxygenase-2, and inducible nitric oxide synthase. Our results suggested that MHY3200 ameliorated HFD-induced hepatic lipid accumulation and inflammation, and improved insulin resistance through PPARα activation.


Assuntos
Benzotiazóis/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Substâncias Protetoras/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Benzotiazóis/síntese química , Benzotiazóis/uso terapêutico , Glicemia/metabolismo , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/sangue , Humanos , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Insulina/sangue , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , PPAR alfa/metabolismo , Substâncias Protetoras/síntese química , Substâncias Protetoras/uso terapêutico , Ratos Sprague-Dawley , Triglicerídeos/sangue
3.
Helicobacter ; 15(4): 295-302, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20633190

RESUMO

BACKGROUND AND AIMS: Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. METHODS: A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. RESULTS: Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. CONCLUSIONS: Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.


Assuntos
Técnicas de Cultura/métodos , Helicobacter pylori/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Helicobacter pylori/metabolismo
4.
Oncotarget ; 8(28): 46273-46285, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28545035

RESUMO

Hepatic steatosis is frequently observed in obese and aged individuals. Because hepatic steatosis is closely associated with metabolic syndromes, including insulin resistance, dyslipidemia, and inflammation, numerous efforts have been made to develop compounds that ameliorate it. Here, a novel peroxisome proliferator-activated receptor (PPAR) α agonist, 4-(benzo[d]thiazol-2-yl)benzene-1,3-diol (MHY553) was developed, and investigated its beneficial effects on hepatic steatosis using young and old Sprague-Dawley rats and HepG2 cells.Docking simulation and Western blotting confirmed that the activity of PPARα, but not that of the other PPAR subtypes, was increased by MHY553 treatment. When administered orally, MHY553 markedly ameliorated aging-induced hepatic steatosis without changes in body weight and serum levels of liver injury markers. Consistent with in vivo results, MHY553 inhibited triglyceride accumulation induced by a liver X receptor agonist in HepG2 cells. Regarding underlying mechanisms, MHY553 stimulated PPARα translocation into the nucleus and increased mRNA levels of its downstream genes related to fatty acid oxidation, including CPT-1A and ACOX1, without apparent change in lipogenesis signaling. Furthermore, MHY553 significantly suppresses inflammatory mRNA expression in old rats. In conclusion, MHY553 is a novel PPARα agonist that improved aged-induced hepatic steatosis, in part by increasing ß-oxidation signaling and decreasing inflammation in the liver. MHY553 is a potential pharmaceutical agent for treating hepatic steatosis in aging.


Assuntos
Envelhecimento/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Oxirredução , PPAR alfa/agonistas , Envelhecimento/patologia , Animais , Biomarcadores , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Modelos Moleculares , Conformação Molecular , PPAR alfa/química , PPAR alfa/genética , Transporte Proteico , Ratos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA