Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(17): 3699-3714, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466186

RESUMO

The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.


Assuntos
Galactoquinase/genética , Galactosemias/fisiopatologia , Junção Neuromuscular/patologia , Sinapses/fisiologia , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Animais , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Galactosemias/metabolismo , Galactosemias/patologia , Glicosilação , Humanos , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Via de Sinalização Wnt
2.
Dis Model Mech ; 9(5): 513-27, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26940433

RESUMO

Congenital disorders of glycosylation (CDGs) constitute a rapidly growing family of human diseases resulting from heritable mutations in genes driving the production and modification of glycoproteins. The resulting symptomatic hypoglycosylation causes multisystemic defects that include severe neurological impairments, revealing a particularly critical requirement for tightly regulated glycosylation in the nervous system. The most common CDG, CDG-Ia (PMM2-CDG), arises from phosphomannomutase type 2 (PMM2) mutations. Here, we report the generation and characterization of the first Drosophila CDG-Ia model. CRISPR-generated pmm2-null Drosophila mutants display severely disrupted glycosylation and early lethality, whereas RNAi-targeted knockdown of neuronal PMM2 results in a strong shift in the abundance of pauci-mannose glycan, progressive incoordination and later lethality, closely paralleling human CDG-Ia symptoms of shortened lifespan, movement impairments and defective neural development. Analyses of the well-characterized Drosophila neuromuscular junction (NMJ) reveal synaptic glycosylation loss accompanied by defects in both structural architecture and functional neurotransmission. NMJ synaptogenesis is driven by intercellular signals that traverse an extracellular synaptomatrix and are co-regulated by glycosylation and matrix metalloproteinases (MMPs). Specifically, trans-synaptic signaling by the Wnt protein Wingless (Wg) depends on the heparan sulfate proteoglycan (HSPG) co-receptor Dally-like protein (Dlp), which is regulated by synaptic MMP activity. Loss of synaptic MMP2, Wg ligand, Dlp co-receptor and downstream trans-synaptic signaling occurs with PMM2 knockdown. Taken together, this Drosophila CDG disease model provides a new avenue for the dissection of cellular and molecular mechanisms underlying neurological impairments and is a means by which to discover and test novel therapeutic treatment strategies.


Assuntos
Defeitos Congênitos da Glicosilação/enzimologia , Defeitos Congênitos da Glicosilação/patologia , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Fosfotransferases (Fosfomutases)/deficiência , Sinapses/enzimologia , Animais , Defeitos Congênitos da Glicosilação/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Longevidade , Movimento , Junção Neuromuscular/metabolismo , Oligossacarídeos/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Polissacarídeos/metabolismo , Postura , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA