Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 112(3): 549-59, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25212985

RESUMO

The study of the biomass porous structure and its role in defining the accessibility of cell-wall-degrading enzymes (CWDEs) to the substrate is very important for understanding the cellulase-cellulose reaction system. Specific pore volume and specific surface area are two important measures of accessibility and a variety of methods have been used to make these measurements. For this study a size exclusion chromatography system was developed to measure specific pore volume and specific surface areas for raw and pretreated mixed-hardwood and switchgrass. Polyethylene glycol (PEG) probes of known molecular diameter (1.8-13 nm) were allowed to diffuse into the pore structure of the various biomass substrate packed in the column and subsequently eluted to generate high resolution concentration measurements with excellent reproducibility. Replicate measurements of probe concentrations from this system consistently yielded coefficient of variance of less than 1.5%. Our results showed that particle size reduction had a smaller influence on the specific pore volume distribution of raw mixed-hardwoods, whereas for switchgrass the larger particles yielded a significantly lower estimate for the pore volume distribution compared to the smaller particles. Our results also clearly showed that our bi-phasic pretreatment yielded the largest increase in pore volume accessibility for mixed-hardwoods relative to switchgrass. From these results a pore size change mechanism was proposed that could explain the influence of size reduction and pretreatment on pore volume measurements.


Assuntos
Cromatografia em Gel/métodos , Panicum/química , Madeira/química , Biomassa , Tamanho da Partícula , Porosidade , Propriedades de Superfície
2.
Biotechnol Bioeng ; 110(1): 127-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22811319

RESUMO

Until now, most efforts to improve monosaccharide production from biomass through pretreatment and enzymatic hydrolysis have used empirical optimization rather than employing a rational design process guided by a theory-based modeling framework. For such an approach to be successful a modeling framework that captures the key mechanisms governing the relationship between pretreatment and enzymatic hydrolysis must be developed. In this study, we propose a pore-hindered diffusion and kinetic model for enzymatic hydrolysis of biomass. When compared to data available in the literature, this model accurately predicts the well-known dependence of initial cellulose hydrolysis rates on surface area available to a cellulase-size molecule. Modeling results suggest that, for particles smaller than 5 × 10(-3) cm, a key rate-limiting step is the exposure of previously unexposed cellulose occurring after cellulose on the surface has hydrolyzed, rather than binding or diffusion. However, for larger particles, according to the model, diffusion plays a more significant role. Therefore, the proposed model can be used to design experiments that produce results that are either affected or unaffected by diffusion. Finally, by using pore size distribution data to predict the biomass fraction that is accessible to degradation, this model can be used to predict cellulose hydrolysis with time using only pore size distribution and initial composition data.


Assuntos
Celulase/metabolismo , Celulose/análise , Celulose/metabolismo , Modelos Biológicos , Biocombustíveis , Biomassa , Biotecnologia , Simulação por Computador , Difusão , Glucose/análise , Glucose/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Tamanho da Partícula , Porosidade
3.
Biotechnol Bioeng ; 110(11): 2836-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23737240

RESUMO

At the most fundamental level, saccharification occurs when cell wall degrading enzymes (CWDEs) diffuse, bind to and react on readily accessible cellulose fibrils. Thus, the study of the diffusive behavior of solutes into and out of cellulosic substrates is important for understanding how biomass pore size distribution affects enzyme transport, binding, and catalysis. In this study, fluorescently labeled dextrans with molecular weights of 20, 70, and 150 kDa were used as probes to assess their diffusion into the porous structure of filter paper. Fluorescence microscopy with high numerical aperture objectives was used to generate high temporal and spatial resolution datasets of probe concentrations versus time. In addition, two diffusion models, including a simple transient diffusion and a pore grouping diffusion models, were developed. These models and the experimental datasets were used to investigate solute diffusion in macro- and micro-pores. Nonlinear least squares fitting of the datasets to the simple transient model yielded diffusion coefficient estimates that were inadequate for describing the initial fast diffusion and the later slow diffusion rates observed; on the other hand, nonlinear least squares fitting of the datasets to the pore grouping diffusion model yielded estimations of the micro-pore diffusion coefficient that described the inherently porous structure of plant-derived cellulose. In addition, modeling results show that on average 75% of the accessible pore volume is available for fast diffusion without any significant pore hindrance. The method developed can be applied to study the porous structure of plant-derived biomass and help assess the diffusion process for enzymes with known sizes.


Assuntos
Celulases/química , Celulases/metabolismo , Dextranos/química , Dextranos/metabolismo , Difusão , Microscopia Confocal , Peso Molecular
4.
Langmuir ; 29(6): 1831-40, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23327491

RESUMO

This study demonstrates that the pattern assembly and attachment strength of colloids in an evaporating sessile droplet resting on a smooth substrate can be controlled by adding nonionic solutes (surfactant) to the solution. As expected, increasing the surfactant concentration leads to a decrease in initial surface tension of the drop, σ(0). For the range of initial surface tensions investigated (39-72 mN m(-1)), three distinct deposition patterns were produced: amorphous stains (σ(0) = 63-72 mN m(-1)), coffee-ring stains (σ(0) = 48-53 mN m(-1)), and concentric rings (σ(0) = 39-45 mN m(-1)). A flow-displacement system was used to measure the attachment strength of the dried colloids. Characteristic drying regimes associated with the three unique pattern formations are attributed to abrupt transitions of contact line dynamics during evaporation. The first transition from slipping- to pinned-contact line was found to be a direct result of the competition between mechanical instability of the droplet and the friction generated by pinned colloids at the contact line. The second transition from pinned- to recurrent-stick-rip-slip-contact line was caused by repeated liquid film rupturing from evaporation-intensified surfactant concentration. Data from flow-displacement tests indicate that attachment strength of dried particles is strongest for amorphous stains (lowest surfactant concentration) and weakest for concentric rings (highest surfactant concentration). The mechanism behind these observations was ascribed to the formation and adsorption of micelles onto colloid and substrate surfaces as the droplet solution evaporates. The range of attachment forces observed between the colloids and the solid substrate were well captured by extended-DLVO interactions accounting for van der Waals attraction, electric double layer repulsion, and micelle-protrusion repulsion. Both empirical and theoretical results suggest that an increasingly dense layer of adsorbed micellar-protrusions on colloid and substrate surfaces acts as a physical barrier that hinders strong van der Waals attractive interactions at close proximity. Thereby, colloid stains dried at higher surfactant concentrations are more easily detached from the substrate when dislodging forces are applied than stains dried at lower surfactant concentrations.

5.
Sci Total Environ ; 635: 1426-1435, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710595

RESUMO

Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R2 = 0.85 for log (E. coli concentration) and R2 = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak.


Assuntos
Monitoramento Ambiental , Escherichia coli , Rios/microbiologia , Microbiologia da Água , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Rios/química
6.
Environ Sci Technol ; 44(13): 4965-72, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20521810

RESUMO

Colloids play an important role in facilitating transport of adsorbed contaminants in soils. Recent studies showed that under saturated conditions colloid retention was a function of its concentration. It is unknown if this is the case under unsaturated conditions. In this study, the effect of colloid concentration on colloid retention was investigated in unsaturated columns by increasing concentrations of colloid influents with varying ionic strength. Colloid retention was observed in situ by bright field microscopy and quantified by measuring colloid breakthrough curves. In our unsaturated experiments, greater input concentrations resulted in increased colloid retention at ionic strength above 0.1 mM, but not in deionized water (i.e., 0 mM ionic strength). Bright field microscope images showed that colloid retention mainly occurred at the solid-water interface and wedge-shaped air-water-solid interfaces, whereas the retention at the grain-grain contacts was minor. Some colloids at the air-water-solid interfaces were rotating and oscillating and thus trapped. Computational hydrodynamic simulation confirmed that the wedge-shaped air-water-solid interface could form a "hydrodynamic trap" by retaining colloids in its low velocity vortices. Direct visualization also revealed that colloids once retained acted as new retention sites for other suspended colloids at ionic strength greater than 0.1 mM and thereby could explain the greater retention with increased input concentrations. Derjaguin-Landau-Verwey-Overbeek (DLVO) energy calculations support this concept. Finally, the results of unsaturated experiments were in agreement with limited saturated experiments under otherwise the same conditions.


Assuntos
Coloides/química , Monitoramento Ambiental/métodos , Adsorção , Ar , Sedimentos Geológicos , Íons , Cinética , Teste de Materiais , Modelos Estatísticos , Poliestirenos/química , Porosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA