Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 29: 593-617, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24099088

RESUMO

The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.


Assuntos
Micorrizas/fisiologia , Plantas/microbiologia , Micorrizas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Simbiose
2.
PLoS Genet ; 19(2): e1010621, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735729

RESUMO

Symbiotic interactions between rhizobia and legumes result in the formation of root nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade legume roots through a plant-made tunnel-like structure called an infection thread (IT). RPG (Rhizobium-directed polar growth) encodes a coiled-coil protein that has been identified in Medicago truncatula as required for root nodule infection, but the function of RPG remains poorly understood. In this study, we identified and characterized RPG in Lotus japonicus and determined that it is required for IT formation. RPG was induced by Mesorhizobium loti or purified Nodulation factor and displayed an infection-specific expression pattern. Nodule inception (NIN) bound to the RPG promoter and induced its expression. We showed that RPG displayed punctate subcellular localization in L. japonicus root protoplasts and in root hairs infected by M. loti. The N-terminal predicted C2 lipid-binding domain of RPG was not required for this subcellular localization or for function. CERBERUS, a U-box E3 ligase which is also required for rhizobial infection, was found to be localized similarly in puncta. RPG co-localized and directly interacted with CERBERUS in the early endosome (TGN/EE) compartment and near the nuclei in root hairs after rhizobial inoculation. Our study sheds light on an RPG-CERBERUS protein complex that is involved in an exocytotic pathway mediating IT elongation.


Assuntos
Lotus , Rhizobium , Rhizobium/genética , Lotus/genética , Lotus/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/genética , Raízes de Plantas
3.
Mol Plant Microbe Interact ; 35(11): 1006-1017, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35852471

RESUMO

Legumes acquire access to atmospheric nitrogen through nitrogen fixation by rhizobia in root nodules. Rhizobia are soil-dwelling bacteria and there is a tremendous diversity of rhizobial species in different habitats. From the legume perspective, host range is a compromise between the ability to colonize new habitats, in which the preferred symbiotic partner may be absent, and guarding against infection by suboptimal nitrogen fixers. Here, we investigate natural variation in rhizobial host range across Lotus species. We find that Lotus burttii is considerably more promiscuous than Lotus japonicus, represented by the Gifu accession, in its interactions with rhizobia. This promiscuity allows Lotus burttii to form nodules with Mesorhizobium, Rhizobium, Sinorhizobium, Bradyrhizobium, and Allorhizobium species that represent five distinct genera. Using recombinant inbred lines, we have mapped the Gifu/burttii promiscuity quantitative trait loci (QTL) to the same genetic locus regardless of rhizobial genus, suggesting a general genetic mechanism for symbiont-range expansion. The Gifu/burttii QTL now provides an opportunity for genetic and mechanistic understanding of promiscuous legume-rhizobia interactions. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Bradyrhizobium , Lotus , Mesorhizobium , Rhizobium , Lotus/genética , Lotus/microbiologia , Rhizobium/genética , Mesorhizobium/genética , Bradyrhizobium/genética , Nitrogênio
4.
New Phytol ; 235(3): 1196-1211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35318667

RESUMO

Early gene expression in arbuscular mycorrhiza (AM) and the nitrogen-fixing root nodule symbiosis (RNS) is governed by a shared regulatory complex. Yet many symbiosis-induced genes are specifically activated in only one of the two symbioses. The Lotus japonicus T-DNA insertion line T90, carrying a promoterless uidA (GUS) gene in the promoter of Calcium Binding Protein 1 (CBP1) is exceptional as it exhibits GUS activity in both root endosymbioses. To identify the responsible cis- and trans-acting factors, we subjected deletion/modification series of CBP1 promoter : reporter fusions to transactivation and spatio-temporal expression analysis and screened ethyl methanesulphonate (EMS)-mutagenized T90 populations for aberrant GUS expression. We identified one cis-regulatory element required for GUS expression in the epidermis and a second element, necessary and sufficient for transactivation by the calcium and calmodulin-dependent protein kinase (CCaMK) in combination with the transcription factor Cyclops and conferring gene expression during both AM and RNS. Lack of GUS expression in T90 white mutants could be traced to DNA hypermethylation detected in and around this element. We concluded that the CCaMK/Cyclops complex can contribute to at least three distinct gene expression patterns on its direct target promoters NIN (RNS), RAM1 (AM), and CBP1 (AM and RNS), calling for yet-to-be identified specificity-conferring factors.


Assuntos
Lotus , Micorrizas , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/metabolismo , Minociclina/metabolismo , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Elementos de Resposta , Simbiose/genética , Ativação Transcricional/genética
5.
PLoS Pathog ; 15(7): e1007747, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299058

RESUMO

The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Interações entre Hospedeiro e Microrganismos/genética , Oomicetos/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Canais Iônicos/genética , Mutação , Micorrizas/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Quinases/genética , Simbiose/genética , Simbiose/fisiologia
6.
New Phytol ; 218(2): 414-431, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29332310

RESUMO

Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
7.
PLoS Genet ; 11(10): e1005623, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517270

RESUMO

Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor.


Assuntos
Lotus/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Nodulação/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/genética , Arabidopsis/genética , Fabaceae/genética , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas , Lotus/microbiologia , Mesorhizobium/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Simbiose/genética
8.
New Phytol ; 215(1): 323-337, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28503742

RESUMO

Bacterial accommodation inside living plant cells is restricted to the nitrogen-fixing root nodule symbiosis. In many legumes, bacterial uptake is mediated via tubular structures called infection threads (ITs). To identify plant genes required for successful symbiotic infection, we screened an ethyl methanesulfonate mutagenized population of Lotus japonicus for mutants defective in IT formation and cloned the responsible gene, ERN1, encoding an AP2/ERF transcription factor. We performed phenotypic analysis of two independent L. japonicus mutant alleles and investigated the regulation of ERN1 via transactivation and DNA-protein interaction assays. In ern1 mutant roots, nodule primordia formed, but most remained uninfected and bacterial entry via ITs into the root epidermis was abolished. Infected cortical nodule cells contained bacteroids, but transcellular ITs were rarely observed. A subset exhibited localized cell wall degradation and loss of cell integrity associated with bacteroid spread into neighbouring cells and the apoplast. Functional promoter studies revealed that CYCLOPS binds in a sequence-specific manner to a motif within the ERN1 promoter and in combination with CCaMK positively regulates ERN1 transcription. We conclude that the activation of ERN1 by CCaMK/CYCLOPS complex is an important step controlling IT-mediated bacterial progression into plant cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Lotus/genética , Doenças das Plantas/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Resistência à Doença/genética , Estudos de Associação Genética , Lotus/imunologia , Lotus/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Regiões Promotoras Genéticas , Rhizobiaceae/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Physiol ; 172(3): 2033-2043, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702844

RESUMO

Thiamine (vitamin B1) is essential for living organisms. Unlike animals, plants can synthesize thiamine. In Lotus japonicus, the expression of two thiamine biosynthesis genes, THI1 and THIC, was enhanced by inoculation with rhizobia but not by inoculation with arbuscular mycorrhizal fungi. THIC and THI2 (a THI1 paralog) were expressed in uninoculated leaves. THI2-knockdown plants and the transposon insertion mutant thiC had chlorotic leaves. This typical phenotype of thiamine deficiency was rescued by an exogenous supply of thiamine. In wild-type plants, THI1 was expressed mainly in roots and nodules, and the thi1 mutant had green leaves even in the absence of exogenous thiamine. THI1 was highly expressed in actively dividing cells of nodule primordia. The thi1 mutant had small nodules, and this phenotype was rescued by exogenous thiamine and by THI1 complementation. Exogenous thiamine increased nodule diameter, but the level of arbuscular mycorrhizal colonization was unaffected in the thi1 mutant or by exogenous thiamine. Expression of symbiotic marker genes was induced normally, implying that mainly nodule growth was delayed in the thi1 mutant. Furthermore, this mutant formed many immature seeds with reduced seed weight. These results indicate that thiamine biosynthesis mediated by THI1 enhances nodule enlargement and is required for seed development in L. japonicus.


Assuntos
Vias Biossintéticas/genética , Lotus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Tiamina/biossíntese , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes de Plantas , Lotus/microbiologia , Mutação/genética , Micorrizas/efeitos dos fármacos , Micorrizas/metabolismo , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Plastídeos/metabolismo , Rhizobium/efeitos dos fármacos , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Frações Subcelulares/metabolismo , Simbiose , Tiamina/farmacologia
10.
Proc Natl Acad Sci U S A ; 110(34): 13965-70, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918389

RESUMO

The mechanisms underpinning broad compatibility in root symbiosis are largely unexplored. The generalist root endophyte Piriformospora indica establishes long-lasting interactions with morphologically and biochemically different hosts, stimulating their growth, alleviating salt stress, and inducing local and systemic resistance to pathogens. Cytological studies and global investigations of fungal transcriptional responses to colonization of barley and Arabidopsis at different symbiotic stages identified host-dependent colonization strategies and host-specifically induced effector candidates. Here, we show that in Arabidopsis, P. indica establishes and maintains biotrophic nutrition within living epidermal cells, whereas in barley the symbiont undergoes a nutritional switch to saprotrophy that is associated with the production of secondary thinner hyphae in dead cortex cells. Consistent with a diversified trophic behavior and with the occurrence of nitrogen deficiency at the onset of saprotrophy in barley, fungal genes encoding hydrolytic enzymes and nutrient transporters were highly induced in this host but not in Arabidopsis. Silencing of the high-affinity ammonium transporter PiAMT1 gene, whose transcripts are accumulating during nitrogen starvation and in barley, resulted in enhanced colonization of this host, whereas it had no effect on the colonization of Arabidopsis. Increased levels of free amino acids and reduced enzymatic activity for the cell-death marker VPE (vacuolar-processing enzyme) in colonized barley roots coincided with an extended biotrophic lifestyle of P. indica upon silencing of PiAMT1. This suggests that PiAmt1 functions as a nitrogen sensor mediating the signal that triggers the in planta activation of the saprotrophic program. Thus, host-related metabolic cues affect the expression of P. indica's alternative lifestyles.


Assuntos
Arabidopsis/microbiologia , Basidiomycota/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Hordeum/microbiologia , Fenômenos Fisiológicos da Nutrição/fisiologia , Raízes de Plantas/microbiologia , Simbiose , Basidiomycota/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Análise em Microsséries , Interferência de RNA , Especificidade da Espécie
11.
Plant Cell ; 24(4): 1691-707, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22534128

RESUMO

The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK-yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment.


Assuntos
Lotus/enzimologia , Lotus/microbiologia , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Rhizobium/fisiologia , Simbiose , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Dominantes/genética , Lotus/genética , Proteínas Nucleares/genética , Nodulação/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/enzimologia , Nicotiana/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Plant Cell ; 24(6): 2528-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22706284

RESUMO

Arbuscular mycorrhiza and the rhizobia-legume symbiosis are two major root endosymbioses that facilitate plant nutrition. In Lotus japonicus, two symbiotic cation channels, CASTOR and POLLUX, are indispensable for the induction of nuclear calcium spiking, one of the earliest plant responses to symbiotic partner recognition. During recent evolution, a single amino acid substitution in DOES NOT MAKE INFECTIONS1 (DMI1), the POLLUX putative ortholog in the closely related Medicago truncatula, rendered the channel solo sufficient for symbiosis; castor, pollux, and castor pollux double mutants of L. japonicus were rescued by DMI1 alone, while both Lj-CASTOR and Lj-POLLUX were required for rescuing a dmi1 mutant of M. truncatula. Experimental replacement of the critical serine by an alanine in the selectivity filter of Lj-POLLUX conferred a symbiotic performance indistinguishable from DMI1. Electrophysiological characterization of DMI1 and Lj-CASTOR (wild-type and mutants) by planar lipid bilayer experiments combined with calcium imaging in Human Embryonic Kidney-293 cells expressing DMI1 (the wild type and mutants) suggest that the serine-to-alanine substitution conferred reduced conductance with a long open state to DMI1 and improved its efficiency in mediating calcium oscillations. We propose that this single amino acid replacement in the selectivity filter made DMI1 solo sufficient for symbiosis, thus explaining the selective advantage of this allele at the mechanistic level.


Assuntos
Sinalização do Cálcio/fisiologia , Evolução Molecular , Canais Iônicos/metabolismo , Lotus/fisiologia , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Alanina/genética , Substituição de Aminoácidos , Evolução Biológica , Linhagem Celular , Fenômenos Eletrofisiológicos , Fabaceae/fisiologia , Teste de Complementação Genética , Humanos , Canais Iônicos/genética , Dados de Sequência Molecular , Mutação , Micorrizas/fisiologia , Filogenia , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Serina/genética , Simbiose/fisiologia
13.
Proc Natl Acad Sci U S A ; 109(47): 19480-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132937

RESUMO

Transcription activator-like effector (TALE) proteins of the plant pathogenic bacterial genus Xanthomonas bind to and transcriptionally activate host susceptibility genes, promoting disease. Plant immune systems have taken advantage of this mechanism by evolving TALE binding sites upstream of resistance (R) genes. For example, the pepper Bs3 and rice Xa27 genes are hypersensitive reaction plant R genes that are transcriptionally activated by corresponding TALEs. Both R genes have a hallmark expression pattern in which their transcripts are detectable only in the presence and not the absence of the corresponding TALE. By transcriptome profiling using next-generation sequencing (RNA-seq), we tested whether we could avoid laborious positional cloning for the isolation of TALE-induced R genes. In a proof-of-principle experiment, RNA-seq was used to identify a candidate for Bs4C, an R gene from pepper that mediates recognition of the Xanthomonas TALE protein AvrBs4. We identified one major Bs4C candidate transcript by RNA-seq that was expressed exclusively in the presence of AvrBs4. Complementation studies confirmed that the candidate corresponds to the Bs4C gene and that an AvrBs4 binding site in the Bs4C promoter directs its transcriptional activation. Comparison of Bs4C with a nonfunctional allele that is unable to recognize AvrBs4 revealed a 2-bp polymorphism within the TALE binding site of the Bs4C promoter. Bs4C encodes a structurally unique R protein and Bs4C-like genes that are present in many solanaceous genomes seem to be as tightly regulated as pepper Bs4C. These findings demonstrate that TALE-specific R genes can be cloned from large-genome crops with a highly efficient RNA-seq approach.


Assuntos
Proteínas de Bactérias/metabolismo , Capsicum/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Proteínas de Bactérias/química , Capsicum/efeitos dos fármacos , Capsicum/imunologia , Capsicum/microbiologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Cicloeximida/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudos de Associação Genética , Doenças das Plantas/genética , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Efetores Semelhantes a Ativadores de Transcrição , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transcriptoma/genética , Xanthomonas/efeitos dos fármacos
14.
Plant J ; 75(1): 117-129, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627596

RESUMO

Arbuscular mycorrhiza (AM) fungi form nutrient-acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM-defective mutants via a microscopic screen of an ethyl methanesulfonate-mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild-type-like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.


Assuntos
Fungos/fisiologia , Regulação da Expressão Gênica de Plantas , Lotus/genética , Mesorhizobium/fisiologia , Micorrizas/genética , Mapeamento Cromossômico , Metanossulfonato de Etila/farmacologia , Fungos/crescimento & desenvolvimento , Fungos/ultraestrutura , Loci Gênicos , Hifas , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Lotus/ultraestrutura , Mutação , Micorrizas/crescimento & desenvolvimento , Micorrizas/ultraestrutura , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Simbiose
15.
New Phytol ; 204(4): 791-802, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25367611

RESUMO

The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Proteínas Quinases/metabolismo , Simbiose/fisiologia , Motivos de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Endocitose , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Rhizobium
16.
Plant Commun ; 5(1): 100671, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553834

RESUMO

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


Assuntos
Fabaceae , Simbiose , Simbiose/genética , Filogenia , Nitrogênio , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Fabaceae/microbiologia
17.
Plant J ; 69(1): 181-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21910770

RESUMO

Temporally and spatially defined calcium signatures are integral parts of numerous signalling pathways. Monitoring calcium dynamics with high spatial and temporal resolution is therefore critically important to understand how this ubiquitous second messenger can control diverse cellular responses. Yellow cameleons (YCs) are fluorescence resonance energy transfer (FRET)-based genetically encoded Ca(2+) -sensors that provide a powerful tool to monitor the spatio-temporal dynamics of Ca(2+) fluxes. Here we present an advanced set of vectors and transgenic lines for live cell Ca(2+) imaging in plants. Transgene silencing mediated by the cauliflower mosaic virus (CaMV) 35S promoter has severely limited the application of nanosensors for ions and metabolites and we have thus used the UBQ10 promoter from Arabidopsis and show here that this results in constitutive and stable expression of YCs in transgenic plants. To improve the spatial resolution, our vector repertoire includes versions of YCs that can be targeted to defined locations. Using this toolkit, we identified temporally distinct responses to external ATP at the plasma membrane, in the cytosol and in the nucleus of neighbouring root cells. Moreover analysis of Ca(2+) dynamics in Lotus japonicus revealed distinct Nod factor induced Ca(2+) spiking patterns in the nucleus and the cytosol. Consequently, the constructs and transgenic lines introduced here enable a detailed analysis of Ca(2+) dynamics in different cellular compartments and in different plant species and will foster novel approaches to decipher the temporal and spatial characteristics of calcium signatures.


Assuntos
Arabidopsis/genética , Cálcio/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Lotus/citologia , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/análise , Caulimovirus/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Citosol/metabolismo , Vetores Genéticos , Lotus/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transgenes
18.
Plant J ; 72(4): 572-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22775286

RESUMO

One of the earliest responses of legumes to symbiotic signalling is oscillation of the calcium concentration in the nucleoplasm of root epidermal cells. Integration and decoding of the calcium-spiking signal involve a calcium- and calmodulin-dependent protein kinase (CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus japonicus ccamk-14 mutant that originated from a har1-1 suppressor screen. The ccamk-14 mutation causes a serine to asparagine substitution at position 337 located within the calmodulin binding site, which we determined to be an in vitro phosphorylation site in CCaMK. We show that ccamk-14 exerts cell-specific effects on symbiosis. The mutant is characterized by an increased frequency of epidermal infections and significantly compromised cortical infections by Mesorhizobium loti and also the arbuscular mycorrhiza fungus Rhizophagus irregularis. The S337 residue is conserved across angiosperm CCaMKs, and testing discrete substitutions at this site showed that it participates in a negative regulation of CCaMK activity, which is required for the cell-type-specific integration of symbiotic signalling.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lotus/enzimologia , Simbiose , Alelos , Substituição de Aminoácidos , Asparagina/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Mapeamento Cromossômico , Ativação Enzimática , Lotus/genética , Lotus/microbiologia , Mesorhizobium/crescimento & desenvolvimento , Mutagênese Sítio-Dirigida , Mutação , Micorrizas/crescimento & desenvolvimento , Fenótipo , Fosforilação , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Raízes de Plantas/microbiologia , Serina/metabolismo
19.
Plant Cell Physiol ; 54(10): 1711-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926062

RESUMO

Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) are mutualistic plant-microbe interactions that confer nutritional benefits to both partners. Leguminous plants possess a common genetic system for intracellular symbiosis with AM fungi and with rhizobia. Here we show that CERBERUS and NSP1, which respectively encode an E3 ubiquitin ligase and a GRAS transcriptional regulator and which have previously only been implicated in RNS, are involved in AM fungal infection in Lotus japonicus. Hyphal elongation along the longitudinal axis of the root was reduced in the cerberus mutant, giving rise to a lower colonization level. Knockout of NSP1 decreased the frequency of plants colonized by AM fungi or rhizobia. CERBERUS and NSP1 showed different patterns of expression in response to infection with symbiotic microbes. A low constitutive level of CERBERUS expression was observed in the root and an increased level of NSP1 expression was detected in arbuscule-containing cells. Induction of AM marker gene was triggered in both cerberus and nsp1 mutants by infection with symbiotic microbes; however, the mutants showed a weaker induction of marker gene expression than the wild type, mirroring their lower level of colonization. The common symbiosis genes are believed to act in an early signaling pathway for recognition of symbionts and for triggering early symbiotic responses. Our quantitative analysis of symbiotic phenotypes revealed developmental defects of the novel common symbiosis mutants in both symbioses, which demonstrates that common symbiosis mechanisms also contribute to a range of functions at later or different stages of symbiont infection.


Assuntos
Lotus/genética , Micorrizas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Hifas/crescimento & desenvolvimento , Hifas/fisiologia , Lotus/metabolismo , Lotus/microbiologia , Mutação , Micorrizas/fisiologia , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Plant Cell Physiol ; 54(1): 107-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161854

RESUMO

The physiological role of K(+)-dependent and K(+)-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K(+)-dependent NSE1 asparaginase in the model legume Lotus japonicus. For this purpose, four different mutants were identified by TILLING and characterized, two of which affected the structure and function of the asparaginase molecule and caused asparagine accumulation. Plant growth and total seed weight of mature mutant seeds as well as the level of both legumin and convicilin seed storage proteins were affected in the mutants. The mutants isolated in the present work are the first of their type in legumes and have enabled us to demonstrate the importance of asparagine and K(+)-dependent NSE1 asparaginase for nitrogen remobilization and seed production in L. japonicus plants.


Assuntos
Asparaginase/metabolismo , Lotus/enzimologia , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Mutação , Nitrogênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA