Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142680

RESUMO

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/tratamento farmacológico , Proclorperazina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Biópsia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Xenoenxertos , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Trastuzumab/farmacologia
2.
Annu Rev Cell Dev Biol ; 34: 111-136, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296391

RESUMO

The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.


Assuntos
Cavéolas/metabolismo , Membrana Celular/genética , Vesículas Transportadoras/genética , Cavéolas/química , Cavéolas/patologia , Membrana Celular/química , Endocitose/genética , Humanos , Transdução de Sinais/genética , Estresse Mecânico , Relação Estrutura-Atividade , Vesículas Transportadoras/química
4.
EMBO J ; 42(13): e112095, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37226896

RESUMO

The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.


Assuntos
Toxinas Botulínicas Tipo A , Toxinas Botulínicas Tipo A/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Ratos
5.
EMBO J ; 42(13): e112767, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37161784

RESUMO

To maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood. Here, we report that SCFFBXL4 , an SKP1/CUL1/F-box protein ubiquitin ligase complex, localises to the mitochondrial outer membrane in unstressed cells and mediates the constitutive ubiquitylation and degradation of the mitophagy receptors NIX and BNIP3 to suppress basal levels of mitophagy. We demonstrate that the pathogenic variants of FBXL4 that cause encephalopathic mtDNA depletion syndrome (MTDPS13) do not efficiently interact with the core SCF ubiquitin ligase machinery or mediate the degradation of NIX and BNIP3. Thus, we reveal a molecular mechanism whereby FBXL4 actively suppresses mitophagy by preventing NIX and BNIP3 accumulation. We propose that the dysregulation of NIX and BNIP3 turnover causes excessive basal mitophagy in FBXL4-associated mtDNA depletion syndrome.


Assuntos
Mitofagia , Fagocitose , Autofagia/fisiologia , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Humanos , Animais , Camundongos
6.
Nat Rev Mol Cell Biol ; 16(5): 311-21, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25857812

RESUMO

How endocytic pits are built in clathrin- and caveolin-independent endocytosis still remains poorly understood. Recent insight suggests that different forms of clathrin-independent endocytosis might involve the actin-driven focusing of membrane constituents, the lectin-glycosphingolipid-dependent construction of endocytic nanoenvironments, and Bin-Amphiphysin-Rvs (BAR) domain proteins serving as scaffolding modules. We discuss the need for different types of internalization processes in the context of diverse cellular functions, the existence of clathrin-independent mechanisms of cargo recruitment and membrane bending from a biological and physical perspective, and finally propose a generic scheme for the formation of clathrin-independent endocytic pits.


Assuntos
Membrana Celular/química , Endocitose , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Clatrina/metabolismo , Humanos , Lectinas/metabolismo , Redes e Vias Metabólicas
7.
Cell ; 150(4): 752-63, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22901807

RESUMO

Caveolin plays an essential role in the formation of characteristic surface pits, caveolae, which cover the surface of many animal cells. The fundamental principles of caveola formation are only slowly emerging. Here we show that caveolin expression in a prokaryotic host lacking any intracellular membrane system drives the formation of cytoplasmic vesicles containing polymeric caveolin. Vesicle formation is induced by expression of wild-type caveolins, but not caveolin mutants defective in caveola formation in mammalian systems. In addition, cryoelectron tomography shows that the induced membrane domains are equivalent in size and caveolin density to native caveolae and reveals a possible polyhedral arrangement of caveolin oligomers. The caveolin-induced vesicles or heterologous caveolae (h-caveolae) form by budding in from the cytoplasmic membrane, generating a membrane domain with distinct lipid composition. Periplasmic solutes are encapsulated in the budding h-caveola, and purified h-caveolae can be tailored to be targeted to specific cells of interest.


Assuntos
Cavéolas/metabolismo , Cavéolas/ultraestrutura , Caveolinas/metabolismo , Escherichia coli , Mamíferos/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos
8.
Mol Cell ; 73(3): 458-473.e7, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30581148

RESUMO

Cholesterol is highly enriched at the plasma membrane (PM), and lipid transfer proteins may deliver cholesterol to the PM in a nonvesicular manner. Here, through a mini-screen, we identified the oxysterol binding protein (OSBP)-related protein 2 (ORP2) as a novel mediator of selective cholesterol delivery to the PM. Interestingly, ORP2-mediated enrichment of PM cholesterol was coupled with the removal of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) from the PM. ORP2 overexpression or deficiency impacted the levels of PM cholesterol and PI(4,5)P2, and ORP2 efficiently transferred both cholesterol and PI(4,5)P2in vitro. We determined the structure of ORP2 in complex with PI(4,5)P2 at 2.7 Å resolution. ORP2 formed a stable tetramer in the presence of PI(4,5)P2, and tetramerization was required for ORP2 to transfer PI(4,5)P2. Our results identify a novel pathway for cholesterol delivery to the PM and establish ORP2 as a key regulator of both cholesterol and PI(4,5)P2 of the PM.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Células HEK293 , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de Esteroides/química , Receptores de Esteroides/genética , Relação Estrutura-Atividade
9.
Immunol Rev ; 317(1): 113-136, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36960679

RESUMO

Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.


Assuntos
Anti-Infecciosos , Gotículas Lipídicas , Humanos , Gotículas Lipídicas/metabolismo , Organelas , Bactérias , Imunidade Inata , Anti-Infecciosos/metabolismo , Metabolismo dos Lipídeos
10.
Cell ; 144(3): 402-13, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295700

RESUMO

The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin- and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin- and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses.


Assuntos
Cavéolas/fisiologia , Células Endoteliais/citologia , Células Musculares/fisiologia , Actinas/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Cavéolas/ultraestrutura , Linhagem Celular , Células Endoteliais/fisiologia , Humanos , Camundongos , Células Musculares/citologia , Estresse Mecânico
11.
Nat Rev Mol Cell Biol ; 14(2): 98-112, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23340574

RESUMO

Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.


Assuntos
Cavéolas/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Animais , Cavéolas/química , Cavéolas/metabolismo , Caveolinas/química , Caveolinas/genética , Caveolinas/metabolismo , Caveolinas/fisiologia , Citoproteção/genética , Citoproteção/fisiologia , Endocitose/genética , Endocitose/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Cell ; 143(5): 761-73, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111236

RESUMO

The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.


Assuntos
Actinas/metabolismo , Endossomos/metabolismo , Transporte Proteico , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Cinética , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Opioides delta/metabolismo
13.
J Biol Chem ; 299(3): 102974, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738791

RESUMO

In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.


Assuntos
Células Artificiais , Fusão de Membrana , Proteínas SNARE , Caveolinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Sintaxina 1/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo
14.
Am J Physiol Endocrinol Metab ; 326(2): E149-E165, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117267

RESUMO

Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Macrófagos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Lipídeos
15.
PLoS Genet ; 17(12): e1009586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941903

RESUMO

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Assuntos
Parede Celular/genética , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/genética , Oxirredutases/genética , Peptidoglicano/genética , Divisão Celular/genética , Membrana Celular/genética , Membrana Celular/microbiologia , Parede Celular/microbiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Lipopolissacarídeos/biossíntese , Mutagênese , Fosfolipídeos/biossíntese , Fosfolipídeos/genética
16.
Traffic ; 22(4): 123-136, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33347683

RESUMO

Retromer core complex is an endosomal scaffold that plays a critical role in orchestrating protein trafficking within the endosomal system. Here we characterized the effect of the Parkinson's disease-linked Vps35 D620N in the endo-lysosomal system using Vps35 D620N rescue cell models. Vps35 D620N fully rescues the lysosomal and autophagy defects caused by retromer knock-out. Analogous to Vps35 knock out cells, the endosome-to-trans-Golgi network transport of cation-independent mannose 6-phosphate receptor (CI-M6PR) is impaired in Vps35 D620N rescue cells because of a reduced capacity to form endosome transport carriers. Cells expressing the Vps35 D620N variant have altered endosomal morphology, resulting in smaller, rounder structures with less tubule-like branches. At the molecular level retromer incorporating Vps35 D620N variant has a decreased binding to retromer associated proteins wiskott-aldrich syndrome protein and SCAR homologue (WASH) and SNX3 which are known to associate with retromer to form the endosome transport carriers. Hence, the partial defects on retrograde protein trafficking carriers in the presence of Vps35 D620N represents an altered cellular state able to cause Parkinson's disease.


Assuntos
Doença de Parkinson , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Biochem Soc Trans ; 51(3): 1377-1385, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37248872

RESUMO

Oxidative stress is a feature of many disease conditions. Oxidative stress can activate a number of cellular pathways leading to cell death, including a distinct iron-dependent pathway involving lipid peroxidation, termed ferroptosis, but cells have evolved complex mechanisms to respond to these stresses. Here, we briefly summarise current evidence linking caveolae to the cellular oxidative stress response. We discuss recent studies in cultured cells and in an in vivo model suggesting that lipid peroxidation driven by oxidative stress causes disassembly of caveolae to release caveola proteins into the cell where they regulate the master transcriptional redox controller, nuclear factor erythroid 2-related factor 2. These studies suggest that caveolae maintain cellular susceptibility to oxidative stress-induced cell death and suggest a crucial role in cellular homeostasis and the response to wounding.


Assuntos
Cavéolas , Estresse Oxidativo , Cavéolas/metabolismo , Células Cultivadas , Oxirredução , Morte Celular , Fator 2 Relacionado a NF-E2/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(48): 30476-30487, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214152

RESUMO

None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous ß2-adrenoreceptor (ß2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated ß2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated ß2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Receptores Adrenérgicos beta 2/química , Imagem Individual de Molécula , Anticorpos de Domínio Único/química , Animais , Linhagem Celular , Endocitose , Imunofluorescência , Expressão Gênica , Genes Reporter , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusão , Imagem Individual de Molécula/métodos , Anticorpos de Domínio Único/metabolismo , Peixe-Zebra
20.
Traffic ; 21(1): 156-161, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418979

RESUMO

The last 20 years have seen incredible advances in electron microscopy (EM). Cryoelectron microscopy can now resolve protein structures to a previously unimaginable resolution but the advances in cellular EM are just as significant. I will take this opportunity to briefly summarize some of the new developments in cellular EM.


Assuntos
Microscopia Eletrônica , Microscopia Crioeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA