Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108776

RESUMO

During space travel, astronauts will experience a unique environment that includes continuous exposure to microgravity and stressful living conditions. Physiological adaptation to this is a challenge and the effect of microgravity on organ development, architecture, and function is not well understood. How microgravity may impact the growth and development of an organ is an important issue, especially as space flight becomes more commonplace. In this work, we sought to address fundamental questions regarding microgravity using mouse mammary epithelial cells in 2D and 3D tissue cultures exposed to simulated microgravity. Mouse mammary HC11 cells contain a higher proportion of stem cells and were also used to investigate how simulated microgravity may impact mammary stem cell populations. In these studies, we exposed mouse mammary epithelial cells to simulated microgravity in 2D and then assayed for changes in cellular characteristics and damage levels. The microgravity treated cells were also cultured in 3D to form acini structures to define if simulated microgravity affects the cells' ability to organize correctly, a quality that is of key importance for mammary organ development. These studies identify changes occurring during exposure to microgravity that impact cellular characteristics such as cell size, cell cycle profiles, and levels of DNA damage. In addition, changes in the percentage of cells revealing various stem cell profiles were observed following simulated microgravity exposure. In summary, this work suggests microgravity may cause aberrant changes in mammary epithelial cells that lead to an increase in cancer risk.


Assuntos
Voo Espacial , Ausência de Peso , Animais , Camundongos , Ausência de Peso/efeitos adversos , Células Cultivadas , Células-Tronco , Células Epiteliais , Simulação de Ausência de Peso
2.
Bioinformatics ; 37(18): 3084-3085, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33620423

RESUMO

MOTIVATION: Organization of the organoid models, imaged in 3D with a confocal microscope, is an essential morphometric index to assess responses to stress or therapeutic targets. In fact, differentiating malignant and normal cells is often difficult in monolayer cultures. But in 3D culture, colony organization can provide a clear set of indices for differentiating malignant and normal cells. The limiting factors are delineating each cell in a 3D colony in the presence of perceptual boundaries between adjacent cells and heterogeneity associated with cells being at different cell cycles. RESULTS: In a previous paper, we defined a potential field for delineating adjacent nuclei, with perceptual boundaries, in 2D histology images by coupling three deep networks. This concept is now extended to 3D and simplified by an enhanced cost function that replaces three deep networks with one. Validation includes four cell lines with diverse mutations, and a comparative analysis with the UNet models of microscopy indicates an improved performance with the F1-score of 0.83. AVAILABILITY AND IMPLEMENTATION: All software and annotated images are available through GitHub and Bioinformatics online. The software includes the proposed method, UNet for microscopy that was extended to 3D and report generation for profiling colony organization. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Algoritmos , Software , Núcleo Celular , Organoides
3.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361532

RESUMO

Tumor and stroma coevolve to facilitate tumor growth. Hence, effective tumor therapeutics would not only induce growth suppression of tumor cells but also revert pro-tumor stroma into anti-tumoral type. Previously, we showed that coculturing triple-negative or luminal A breast cancer cells with CD36+ fibroblasts (FBs) in a three-dimensional extracellular matrix induced their growth suppression or phenotypic reversion, respectively. Then, we identified SLIT3, FBLN-1, and PENK as active protein ligands secreted from CD36+ FBs that induced growth suppression of MDA-MB-231 breast cancer cells and determined their minimum effective concentrations. Here, we have expanded our analyses to include additional triple-negative cancer cell lines, BT549 and Hs578T, as well as HCC1937 carrying a BRCA1 mutation. We show that the ectopic addition of each of the three ligands to cancer-associated fibroblasts (CAFs) elevates the expression of CD36, as well as the adipogenic marker FABP4. Lastly, we show that an agonist antibody for one of the PENK receptors induces growth suppression of all cancer cell lines tested but not for non-transformed MCF10A cells. These results clearly suggest that proteins secreted from CD36+ FBs induce not only growth suppression of tumor cells through binding the cognate receptors but also increasing adipogenic markers of CAFs to reprogram tumor stroma.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Fibroblastos Associados a Câncer/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Técnicas de Cocultura , Antígenos CD36/genética , Antígenos CD36/metabolismo , Biomarcadores/metabolismo , Ligantes
4.
Bioinformatics ; 36(7): 1989-1993, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778145

RESUMO

MOTIVATION: Aberrant three-dimensional (3D) colony organization of premalignant human mammary epithelial cells (HMECs) is one of the indices of dysplasia. An experiment has been designed where the stiffness of the microenvironment, in 3D culture, has been set at either low or high level of mammographic density (MD) and the organoid models are exposed to 50 cGy X-ray radiation. This study utilizes published bioinformatics tools to quantify the frequency of aberrant colony formations by the combined stressors of stiffness and X-ray exposure. One of the goals is to develop a quantitative assay for evaluating the risk factors associated with women with high MD exposed to X-ray radiation. RESULTS: Analysis of 3D colony formations indicate that high stiffness, within the range of high MD, and X-ray radiation have an approximately additive effect on increasing the frequency of aberrant colony formations. Since both stiffness and X-ray radiation are DNA-damaging stressors, the additive effect of these stressors is also independently validated by profiling activin A-secreted protein. Secretion of activin A is known to be higher in tissues with a high MD as well as tumor cells. In addition, we show that increased stiffness of the microenvironment also induces phosphorylation of γH2AX-positive foci. The study uses two HMECs derived from a diseased tissue (e.g. MCF10A) and reduction mammoplasty of normal breast tissue (e.g. 184A1) to further demonstrate similar traits in the frequency of aberrant colony organization. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama , Exposição à Radiação , Densidade da Mama , Células Epiteliais , Feminino , Humanos , Organoides , Fosforilação
5.
Bioinformatics ; 36(6): 1663-1667, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688895

RESUMO

MOTIVATION: Our previous study has shown that ERBB2 is overexpressed in the organoid model of MCF10A when the stiffness of the microenvironment is increased to that of high mammographic density (MD). We now aim to identify key transcription factors (TFs) and functional enhancers that regulate processes associated with increased stiffness of the microenvironment in the organoid models of premalignant human mammary cell lines. RESULTS: 3D colony organizations and the cis-regulatory networks of two human mammary epithelial cell lines (184A1 and MCF10A) are investigated as a function of the increased stiffness of the microenvironment within the range of MD. The 3D colonies are imaged using confocal microscopy, and the morphometries of colony organizations and heterogeneity are quantified as a function of the stiffness of the microenvironment using BioSig3D. In a surrogate assay, colony organizations are profiled by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed morphometric indices. Next, a subset of enriched data are processed against publicly available ChIP-Seq data using Model-based Analysis of Regulation of Gene Expression to predict regulatory transcription factors. This integrative analysis of morphometric and transcriptomic data predicted YY1 as one of the cis-regulators in both cell lines as a result of the increased stiffness of the microenvironment. Subsequent experiments validated that YY1 is expressed at protein and mRNA levels for MCF10A and 184A1, respectively. Also, there is a causal relationship between activation of YY1 and ERBB2 when YY1 is overexpressed at the protein level in MCF10A. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Densidade da Mama , Organoides , Fator de Transcrição YY1 , Linhagem Celular , Biologia Computacional , Humanos , Fatores de Transcrição
6.
Biochem Biophys Res Commun ; 526(1): 41-47, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32192771

RESUMO

Human breast tumors are not fully autonomous. They are dependent on nutrients and growth-promoting signals provided by the supporting stromal cells. Within the tumor microenvironment, one of the secreted macromolecules by tumor cells is activin A, where we show to downregulate CD36 in fibroblasts. Downregulation of CD36 in fibroblasts also increases the secretion of activin A by fibroblasts. We hypothesize that overexpression of CD36 in fibroblasts inhibits the formation of solid tumors in subtypes of breast cancer models. For the first time, we show that co-culturing organoid models of breast cancer cell lines of MDA-MB-231 (e.g., a triple-negative line) or MCF7 (e.g., a luminal-A line) with CD36+ fibroblasts inhibit the growth and normalizes basal and lateral polarities, respectively. In the long-term anchorage-independent growth assay, the rate of colony formation is also reduced for MDA-MB-231. These observations are consistent with the mechanism of tumor suppression involving the downregulation of pSMAD2/3 and YY1 expression levels. Our integrated analytical methods leverage and extend quantitative assays at cell- and colony-scales in both short- and long-term cultures using brightfield or immunofluorescent microscopy and robust image analysis. Conditioned media are profiled with the ELISA assay.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Antígenos CD36/metabolismo , Fibroblastos/metabolismo , Glândulas Mamárias Humanas/patologia , Ativinas/farmacologia , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Smad/metabolismo , Ensaio Tumoral de Célula-Tronco , Fator de Transcrição YY1/metabolismo
7.
Bioinformatics ; 35(22): 4860-4861, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135022

RESUMO

MOTIVATION: Nuclear delineation and phenotypic profiling are important steps in the automated analysis of histology sections. However, these are challenging problems due to (i) technical variations (e.g. fixation, staining) that originate as a result of sample preparation; (ii) biological heterogeneity (e.g. vesicular versus high chromatin phenotypes, nuclear atypia) and (iii) overlapping nuclei. This Application-Note couples contextual information about the cellular organization with the individual signature of nuclei to improve performance. As a result, routine delineation of nuclei in H&E stained histology sections is enabled for either computer-aided pathology or integration with genome-wide molecular data. RESULTS: The method has been evaluated on two independent datasets. One dataset originates from our lab and includes H&E stained sections of brain and breast samples. The second dataset is publicly available through IEEE with a focus on gland-based tissue architecture. We report an approximate AJI of 0.592 and an F1-score 0.93 on both datasets. AVAILABILITY AND IMPLEMENTATION: The code-base, modified dataset and results are publicly available. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Núcleo Celular , Técnicas Histológicas , Cromatina , Genoma , Fenótipo
8.
Appl Microbiol Biotechnol ; 104(24): 10571-10584, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33185701

RESUMO

The detection and identification of microbial pathogens in meat and fresh produce play an essential role in food safety for reducing foodborne illnesses every year. A new approach based on targeting a specific sequence of the 16S rRNA region for each bacterium is proposed and validated. The probe complex consists of a C60, a conjugated RNA detector which targets a specific 16S rRNA sequence, and a complementary fluorescent reporter. The RNA detectors were designed by integrating NIH nucleotide and Vienna RNA Webservice databases, and their specificities were validated by the RDP database. Probe complexes were synthesized for identifying E. coli K12, E. coli O157: H7, S. enterica, Y. enterocolitica, C. perfringens, and L. monocytogenes. First, under controlled conditions of known bacterial mixtures, the efficiency and crosstalk for identifying the foodborne bacteria were quantified to be above 94% and below 5%, respectively. Second, experiments were designed by inoculating meat products by known numbers of bacteria and measuring the limit of detection. In one experiment, 225 g of autoclaved ground chicken was inoculated with 9 E. coli O157:H7, where 6.8 ± 1.2 bacteria with 95% confidence interval were recovered. Third, by positionally printing probe complexes in microwells, specific microorganisms were identified with only one fluorophore. The proposed protocol is a cell-based system, can identify live bacteria in 15 min, requires no amplification, and has the potential to open new surveillance opportunities.Key points• The identification of foodborne bacteria is enabled in live-cell assays.• The limit of detection for 100 g of fresh chicken breast inoculated with 4 bacteria is 2.7 ± 1.4 with 95% confidence interval.• The identification of five bacteria in a coded microwell chip is enabled with only one fluorophore.


Assuntos
Escherichia coli O157 , Doenças Transmitidas por Alimentos , Listeria monocytogenes , Bactérias/genética , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Humanos , RNA Ribossômico 16S/genética
9.
BMC Bioinformatics ; 19(1): 294, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30086715

RESUMO

BACKGROUND: Nuclear segmentation is an important step for profiling aberrant regions of histology sections. If nuclear segmentation can be resolved, then new biomarkers of nuclear phenotypes and their organization can be predicted for the application of precision medicine. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), nuclear phenotypes (e.g., vesicular, aneuploidy), and overlapping nuclei. The problem is further complicated as a result of variations in sample preparation (e.g., fixation, staining). Our hypothesis is that (i) deep learning techniques can learn complex phenotypic signatures that rise in tumor sections, and (ii) fusion of different representations (e.g., regions, boundaries) contributes to improved nuclear segmentation. RESULTS: We have demonstrated that training of deep encoder-decoder convolutional networks overcomes complexities associated with multiple nuclear phenotypes, where we evaluate alternative architecture of deep learning for an improved performance against the simplicity of the design. In addition, improved nuclear segmentation is achieved by color decomposition and combining region- and boundary-based features through a fusion network. The trained models have been evaluated against approximately 19,000 manually annotated nuclei, and object-level Precision, Recall, F1-score and Standard Error are reported with the best F1-score being 0.91. Raw training images, annotated images, processed images, and source codes are released as a part of the Additional file 1. CONCLUSIONS: There are two intrinsic barriers in nuclear segmentation to H&E stained images, which correspond to the diversity of nuclear phenotypes and perceptual boundaries between adjacent cells. We demonstrate that (i) the encoder-decoder architecture can learn complex phenotypes that include the vesicular type; (ii) delineation of overlapping nuclei is enhanced by fusion of region- and edge-based networks; (iii) fusion of ENets produces an improved result over the fusion of UNets; and (iv) fusion of networks is better than multitask learning. We suggest that our protocol enables processing a large cohort of whole slide images for applications in precision medicine.


Assuntos
Algoritmos , Núcleo Celular/patologia , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Fenótipo
10.
J Nanobiotechnology ; 15(1): 78, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121930

RESUMO

BACKGROUND: Rapid identification of bacteria can play an important role at the point of care, evaluating the health of the ecosystem, and discovering spatiotemporal distributions of a bacterial community. We introduce a method for rapid identification of bacteria in live cell assays based on cargo delivery of a nucleic acid sequence and demonstrate how a mixed culture can be differentiated using a simple microfluidic system. METHODS: C60 Buckyballs are functionalized with nucleic acid sequences and a fluorescent reporter to show that a diversity of microorganisms can be detected and identified in live cell assays. The nucleic acid complexes include an RNA detector, targeting a species-specific sequence in the 16S rRNA, and a complementary DNA with an attached fluorescent reporter. As a result, each bacterium can be detected and visualized at a specific emission frequency through fluorescence microscopy. RESULTS: The C60 probe complexes can detect and identify a diversity of microorganisms that include gram-position and negative bacteria, yeast, and fungi. More specifically, nucleic-acid probes are designed to identify mixed cultures of Bacillus subtilis and Streptococcus sanguinis, or Bacillus subtilis and Pseudomonas aeruginosa. The efficiency, cross talk, and accuracy for the C60 probe complexes are reported. Finally, to demonstrate that mixed cultures can be separated, a microfluidic system is designed that connects a single source-well to multiple sinks wells, where chemo-attractants are placed in the sink wells. The microfluidic system allows for differentiating a mixed culture. CONCLUSIONS: The technology allows profiling of bacteria composition, at a very low cost, for field studies and point of care.


Assuntos
Aptâmeros de Nucleotídeos/química , Bacillus subtilis/isolamento & purificação , Separação Celular/métodos , Fulerenos/química , Pseudomonas aeruginosa/isolamento & purificação , RNA Ribossômico 16S/química , Streptococcus sanguis/isolamento & purificação , Aptâmeros de Nucleotídeos/síntese química , Bacillus subtilis/química , Bacillus subtilis/genética , Pareamento de Bases , Bioensaio/economia , Bioensaio/instrumentação , Separação Celular/economia , Fatores Quimiotáticos/química , Corantes Fluorescentes/química , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência , Sistemas Automatizados de Assistência Junto ao Leito , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Sensibilidade e Especificidade , Streptococcus sanguis/química , Streptococcus sanguis/genética
11.
Int J Comput Vis ; 113(1): 3-18, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27721567

RESUMO

Image-based classification of histology sections, in terms of distinct components (e.g., tumor, stroma, normal), provides a series of indices for histology composition (e.g., the percentage of each distinct components in histology sections), and enables the study of nuclear properties within each component. Furthermore, the study of these indices, constructed from each whole slide image in a large cohort, has the potential to provide predictive models of clinical outcome. For example, correlations can be established between the constructed indices and the patients' survival information at cohort level, which is a fundamental step towards personalized medicine. However, performance of the existing techniques is hindered as a result of large technical variations (e.g., variations of color/textures in tissue images due to non-standard experimental protocols) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. We propose a system that automatically learns a series of dictionary elements for representing the underlying spatial distribution using stacked predictive sparse decomposition. The learned representation is then fed into the spatial pyramid matching framework with a linear support vector machine classifier. The system has been evaluated for classification of distinct histological components for two cohorts of tumor types. Throughput has been increased by using of graphical processing unit (GPU), and evaluation indicates a superior performance results, compared with previous research.

12.
Proc Natl Acad Sci U S A ; 109(33): 13225-30, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847404

RESUMO

Interest in algae has significantly accelerated with the increasing recognition of their potentially unique role in medical, materials, energy, bioremediation, and synthetic biological research. However, the introduction of tools to study, control, or expand the inner-workings of algae has lagged behind. Here we describe a general molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing small and large cargos into algal cells. Significantly, this method is shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae including Neochloris oleoabundans and Scenedesmus dimorphus thus providing a new and versatile tool for algal research.


Assuntos
Bioquímica/métodos , Parede Celular/metabolismo , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Sondas Moleculares/metabolismo , Proteínas/metabolismo , Transporte Biológico , Escuridão , Flagelos/metabolismo , Citometria de Fluxo , Fluoresceína/metabolismo , Microscopia de Fluorescência , Temperatura
13.
Pattern Recognit ; 48(3): 882-893, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25530633

RESUMO

Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance.

14.
Bioinformatics ; 29(23): 3087-93, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24045773

RESUMO

MOTIVATION: Our goal is to develop a screening platform for quantitative profiling of colony organizations in 3D cell culture models. The 3D cell culture models, which are also imaged in 3D, are functional assays that mimic the in vivo characteristics of the tissue architecture more faithfully than the 2D cultures. However, they also introduce significant computational challenges, with the main barriers being the effects of growth conditions, fixations and inherent complexities in segmentation that need to be resolved in the 3D volume. RESULTS: A segmentation strategy has been developed to delineate each nucleus in a colony that overcomes (i) the effects of growth conditions, (ii) variations in chromatin distribution and (iii) ambiguities formed by perceptual boundaries from adjacent nuclei. The strategy uses a cascade of geometric filters that are insensitive to spatial non-uniformity and partitions a clump of nuclei based on the grouping of points of maximum curvature at the interface of two neighboring nuclei. These points of maximum curvature are clustered together based on their coplanarity and proximity to define dissecting planes that separate the touching nuclei. The proposed curvature-based partitioning method is validated with both synthetic and real data, and is shown to have a superior performance against previous techniques. Validation and sensitivity analysis are coupled with the experimental design that includes a non-transformed cell line and three tumorigenic cell lines, which covers a wide range of phenotypic diversity in breast cancer. Colony profiling, derived from nuclear segmentation, reveals distinct indices for the morphogenesis of each cell line.


Assuntos
Neoplasias da Mama/patologia , Mama/citologia , Técnicas de Cultura de Células , Núcleo Celular/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Confocal , Células Cultivadas , Feminino , Humanos
15.
Cancers (Basel) ; 15(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190318

RESUMO

Tumor Whole Slide Images (WSI) are often heterogeneous, which hinders the discovery of biomarkers in the presence of confounding clinical factors. In this study, we present a pipeline for identifying biomarkers from the Glioblastoma Multiforme (GBM) cohort of WSIs from TCGA archive. The GBM cohort endures many technical artifacts while the discovery of GBM biomarkers is challenged because "age" is the single most confounding factor for predicting outcomes. The proposed approach relies on interpretable features (e.g., nuclear morphometric indices), effective similarity metrics for heterogeneity analysis, and robust statistics for identifying biomarkers. The pipeline first removes artifacts (e.g., pen marks) and partitions each WSI into patches for nuclear segmentation via an extended U-Net for subsequent quantitative representation. Given the variations in fixation and staining that can artificially modulate hematoxylin optical density (HOD), we extended Navab's Lab method to normalize images and reduce the impact of batch effects. The heterogeneity of each WSI is then represented either as probability density functions (PDF) per patient or as the composition of a dictionary predicted from the entire cohort of WSIs. For PDF- or dictionary-based methods, morphometric subtypes are constructed based on distances computed from optimal transport and linkage analysis or consensus clustering with Euclidean distances, respectively. For each inferred subtype, Kaplan-Meier and/or the Cox regression model are used to regress the survival time. Since age is the single most important confounder for predicting survival in GBM and there is an observed violation of the proportionality assumption in the Cox model, we use both age and age-squared coupled with the Likelihood ratio test and forest plots for evaluating competing statistics. Next, the PDF- and dictionary-based methods are combined to identify biomarkers that are predictive of survival. The combined model has the advantage of integrating global (e.g., cohort scale) and local (e.g., patient scale) attributes of morphometric heterogeneity, coupled with robust statistics, to reveal stable biomarkers. The results indicate that, after normalization of the GBM cohort, mean HOD, eccentricity, and cellularity are predictive of survival. Finally, we also stratified the GBM cohort as a function of EGFR expression and published genomic subtypes to reveal genomic-dependent morphometric biomarkers.

16.
BMC Bioinformatics ; 12: 484, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185703

RESUMO

BACKGROUND: Our goals are to develop a computational histopathology pipeline for characterizing tumor types that are being generated by The Cancer Genome Atlas (TCGA) for genomic association. TCGA is a national collaborative program where different tumor types are being collected, and each tumor is being characterized using a variety of genome-wide platforms. Here, we have developed a tumor-centric analytical pipeline to process tissue sections stained with hematoxylin and eosin (H&E) for visualization and cell-by-cell quantitative analysis. Thus far, analysis is limited to Glioblastoma Multiforme (GBM) and kidney renal clear cell carcinoma tissue sections. The final results are being distributed for subtyping and linking the histology sections to the genomic data. RESULTS: A computational pipeline has been designed to continuously update a local image database, with limited clinical information, from an NIH repository. Each image is partitioned into blocks, where each cell in the block is characterized through a multidimensional representation (e.g., nuclear size, cellularity). A subset of morphometric indices, representing potential underlying biological processes, can then be selected for subtyping and genomic association. Simultaneously, these subtypes can also be predictive of the outcome as a result of clinical treatments. Using the cellularity index and nuclear size, the computational pipeline has revealed five subtypes, and one subtype, corresponding to the extreme high cellularity, has shown to be a predictor of survival as a result of a more aggressive therapeutic regime. Further association of this subtype with the corresponding gene expression data has identified enrichment of (i) the immune response and AP-1 signaling pathways, and (ii) IFNG, TGFB1, PKC, Cytokine, and MAPK14 hubs. CONCLUSION: While subtyping is often performed with genome-wide molecular data, we have shown that it can also be applied to categorizing histology sections. Accordingly, we have identified a subtype that is a predictor of the outcome as a result of a therapeutic regime. Computed representation has become publicly available through our Web site.


Assuntos
Glioblastoma/patologia , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Perfilação da Expressão Gênica , Glioblastoma/classificação , Glioblastoma/genética , Humanos , Transdução de Sinais
17.
Bioinformatics ; 26(12): i97-105, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20529943

RESUMO

MOTIVATION: Molecular association of phenotypic responses is an important step in hypothesis generation and for initiating design of new experiments. Current practices for associating gene expression data with multidimensional phenotypic data are typically (i) performed one-to-one, i.e. each gene is examined independently with a phenotypic index and (ii) tested with one stress condition at a time, i.e. different perturbations are analyzed separately. As a result, the complex coordination among the genes responsible for a phenotypic profile is potentially lost. More importantly, univariate analysis can potentially hide new insights into common mechanism of response. RESULTS: In this article, we propose a sparse, multitask regression model together with co-clustering analysis to explore the intrinsic grouping in associating the gene expression with phenotypic signatures. The global structure of association is captured by learning an intrinsic template that is shared among experimental conditions, with local perturbations introduced to integrate effects of therapeutic agents. We demonstrate the performance of our approach on both synthetic and experimental data. Synthetic data reveal that the multi-task regression has a superior reduction in the regression error when compared with traditional L(1)-and L(2)-regularized regression. On the other hand, experiments with cell cycle inhibitors over a panel of 14 breast cancer cell lines demonstrate the relevance of the computed molecular predictors with the cell cycle machinery, as well as the identification of hidden variables that are not captured by the baseline regression analysis. Accordingly, the system has identified CLCA2 as a hidden transcript and as a common mechanism of response for two therapeutic agents of CI-1040 and Iressa, which are currently in clinical use.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Neoplasias da Mama/genética , Feminino , Genes cdc , Humanos , Análise de Regressão
18.
PLoS Comput Biol ; 6(8)2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20865159

RESUMO

Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini). In order to shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line, MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies onto in silico ones we have generated a means of linking the morphological and molecular scales via computational modeling. Thus, IBCell in combination with 3D acini cultures can form a computational/experimental platform for suggesting the relationship between the histopathology of neoplastic lesions and their underlying molecular defects.


Assuntos
Neoplasias da Mama/genética , Epitélio/crescimento & desenvolvimento , Glândulas Mamárias Humanas/fisiologia , Modelos Biológicos , Morfogênese/genética , Mutação , Apoptose/genética , Proliferação de Células , Simulação por Computador , Matriz Extracelular/genética , Feminino , Humanos , Glândulas Mamárias Humanas/anatomia & histologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Receptor ErbB-2/genética
19.
PLoS Comput Biol ; 6(2): e1000684, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195492

RESUMO

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARgamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARgamma has been validated through two supporting biological assays.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Histocitoquímica , Humanos , Processamento de Imagem Assistida por Computador , PPAR gama/metabolismo , Fenótipo , Receptor ErbB-2/metabolismo , Reprodutibilidade dos Testes
20.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572749

RESUMO

Reprogramming the tumor stroma is an emerging approach to circumventing the challenges of conventional cancer therapies. This strategy, however, is hampered by the lack of a specific molecular target. We previously reported that stromal fibroblasts (FBs) with high expression of CD36 could be utilized for this purpose. These studies are now expanded to identify the secreted factors responsible for tumor suppression. Methodologies included 3D colonies, fluorescent microscopy coupled with quantitative techniques, proteomics profiling, and bioinformatics analysis. The results indicated that the conditioned medium (CM) of the CD36+ FBs caused growth suppression via apoptosis in the triple-negative cell lines of MDA-MB-231, BT549, and Hs578T, but not in the ERBB2+ SKBR3. Following the proteomics and bioinformatic analysis of the CM of CD36+ versus CD36- FBs, we determined KLF10 as one of the transcription factors responsible for growth suppression. We also identified FBLN1, SLIT3, and PENK as active ligands, where their minimum effective concentrations were determined. Finally, in MDA-MB-231, we showed that a mixture of FBLN1, SLIT3, and PENK could induce an amount of growth suppression similar to the CM of CD36+ FBs. In conclusion, our findings suggest that these ligands, secreted by CD36+ FBs, can be targeted for breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA