Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3105-3110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086622

RESUMO

Virtual reality (VR) offers a robust platform for human behavioral neuroscience, granting unprecedented experimental control over every aspect of an immersive and interactive visual environment. VR experiments have already integrated non-invasive neural recording modalities such as EEG and functional MRI to explore the neural correlates of human behavior and cognition. Integration with implanted electrodes would enable significant increase in spatial and temporal resolution of recorded neural signals and the option of direct brain stimulation for neurofeedback. In this paper, we discuss the first such implementation of a VR platform with implanted electrocorticography (ECoG) and stereo-electroencephalography ( sEEG) electrodes in human, in-patient subjects. Noise analyses were performed to evaluate the effect of the VR headset on neural data collected in two VR-naive subjects, one child and one adult, including both ECOG and sEEG electrodes. Results demonstrate an increase in line noise power (57-63Hz) while wearing the VR headset that is mitigated effectively by common average referencing (CAR), and no significant change in the noise floor bandpower (125-240Hz). To our knowledge, this study represents first demonstrations of VR immersion during invasive neural recording with in-patient human subjects. Clinical Relevance- Immersive virtual reality tasks were well-tolerated and the quality of clinical neural signals preserved during VR immersion with two in-patient invasive neural recording subjects.


Assuntos
Eletrocorticografia , Realidade Virtual , Adulto , Criança , Eletrodos Implantados , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
2.
Neuroimage Clin ; 12: 47-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408790

RESUMO

A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cannabis/efeitos adversos , Fumar Maconha/efeitos adversos , Substância Branca/efeitos dos fármacos , Substância Branca/patologia , Adulto , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Imagem de Tensor de Difusão , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/patologia , Adulto Jovem
3.
Physiol Behav ; 158: 60-7, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921099

RESUMO

Understanding how exercise affects communication across the brain in overweight/obese individuals may provide insight into mechanisms of weight loss and maintenance. In the current study, we examined the effects of a 6-month exercise program in 11 overweight/obese individuals (mean BMI: 33.6±1.4mg/kg(2); mean age: 38.2±3.2years) on integrative brain "hubs," which are areas with high levels of connectivity to multiple large-scale networks thought to play an important role in multimodal integration among brain regions. These integrative hubs were identified with a recently developed between-network connectivity (BNC) metric, using functional magnetic resonance imaging (fMRI). BNC utilizes a multiple regression analysis approach to assess relationships between the time series of large-scale functionally-connected brain networks (identified using independent components analysis) and the time series of each individual voxel in the brain. This approach identifies brain regions with high between-network interaction, i.e., areas with high levels of connectivity to many large-scale networks. Changes in BNC following exercise were determined using paired t-tests, with results considered significant at a whole-brain level if they exceeded a voxel-wise threshold of p<0.01 and cluster-level family-wise error (FWE) correction for multiple comparisons of p<0.05. Following the intervention, BNC in the posterior cingulate cortex (PCC) was significantly reduced (p<0.001). The changes driving the observed effects were explored using Granger causality, finding significant reductions in both outgoing causal flow from the PCC to a number of networks (p<0.05; language network, visual network, sensorimotor network, left executive control network, basal ganglia network, posterior default mode network), in addition to reductions in ingoing causal flow to the PCC from a number of networks (p<0.05; ventral default mode network, language network, sensorimotor network, basal ganglia network). Change in BNC was related to changes in aerobic fitness level (VO2 max; p=0.008) and perceived hunger (Three Factor Eating Questionnaire; p=0.040). Overall, the impact of exercise on communication between large-scale networks may contribute to individual responsivity to exercise.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Exercício Físico/fisiologia , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Absorciometria de Fóton , Adulto , Metabolismo Basal , Composição Corporal , Encéfalo/diagnóstico por imagem , Feminino , Hormônios/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Ventilação Voluntária Máxima , Obesidade/diagnóstico por imagem , Sobrepeso/diagnóstico por imagem , Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA