Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012828

RESUMO

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Assuntos
Embriófitas , Regulação da Expressão Gênica de Plantas , Micorrizas , Proteínas de Plantas , Simbiose , Simbiose/genética , Micorrizas/fisiologia , Micorrizas/genética , Embriófitas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/microbiologia , Filogenia
2.
Plant J ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818938

RESUMO

The apocarotenoid strigolactones (SLs) facilitate pre-symbiotic communication between arbuscular mycorrhizal (AM) fungi and plants. Related blumenol-C-glucosides (blumenols), have also been associated with symbiosis, but the cues that are involved in the regulation of blumenol accumulation during AM symbiosis remain unclear. In rice, our analyses demonstrated a strict correlation between foliar blumenol abundance and intraradical fungal colonisation. More specifically, rice mutants affected at distinct stages of the interaction revealed that fungal cortex invasion was required for foliar blumenol accumulation. Plant phosphate status and D14L hormone signalling had no effect, contrasting their known role in induction of SLs. This a proportion of the SL biosynthetic enzymes, D27 and D17, are equally required for blumenol production. These results importantly clarify that, while there is a partially shared biosynthetic pathway between SL and blumenols, the dedicated induction of the related apocarotenoids occurs in response to cues acting at distinct stages during the root colonisation process. However, we reveal that neither SLs nor blumenols are essential for fungal invasion of rice roots.

3.
Genome Res ; 31(12): 2290-2302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34772700

RESUMO

Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.

4.
J Microsc ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747391

RESUMO

Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.

5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161289

RESUMO

Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that ARK1 has an ancient paralogue in spermatophytes, ARK2 Single ark2 and ark1/ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2 Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.


Assuntos
Micorrizas/metabolismo , Oryza/enzimologia , Filogenia , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Domínios Proteicos , Receptores Proteína Tirosina Quinases/química
6.
Plant J ; 112(1): 294-301, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35934996

RESUMO

The arbuscular mycorrhizal (AM) symbiosis is characterized by the reciprocal exchange of nutrients. AM fungi are oleaginous microorganisms that obtain essential fatty acids from host plants. A lipid biosynthesis and delivery pathway has been proposed to operate in inner root cortex cells hosting arbuscules, a cell type challenging to access microscopically. Despite the central role lipids play in the association, lipid distribution patterns during arbuscule development are currently unknown. We developed a simple co-staining method employing fluorophore-conjugated Wheat Germ Agglutinin (WGA) and a lipophilic blue fluorochrome, Ac-201, for the simultaneous imaging of arbuscules and lipids distributed within arbuscule-containing cells in high resolution. We observed lipid distribution patterns in wild-type root infection zones in a variety of plant species. In addition, we applied this methodology to mutants of the Lotus japonicus GRAS transcription factor RAM1 and the Oryza sativa half-size ABC transporter STR1, both proposed to be impaired in the symbiotic lipid biosynthesis-delivery pathway. We found that lipids accumulated in cortical cells hosting stunted arbuscules in Ljram1 and Osstr1, and observed lipids in the arbuscule body of Osstr1, suggesting that in the corresponding plant species, RAM1 and STR1 may not be essential for symbiotic lipid biosynthesis and transfer from arbuscule-containing cells, respectively. The versatility of this methodology has the potential to help elucidate key questions on the complex lipid dynamics fostering AM symbioses.


Assuntos
Micorrizas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Corantes Fluorescentes , Regulação da Expressão Gênica de Plantas , Lipídeos , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose , Fatores de Transcrição/metabolismo , Aglutininas do Germe de Trigo/metabolismo
7.
Plant Physiol ; 182(4): 1597-1612, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32054781

RESUMO

Plant receptor-like kinases (RLKs) control the initiation, development, and maintenance of symbioses with beneficial mycorrhizal fungi and nitrogen-fixing bacteria. Carbohydrate perception activates symbiosis signaling via Lysin-motif RLKs and subsequently the common symbiosis signaling pathway. As the receptors activated are often also immune receptors in multiple species, exactly how carbohydrate identities avoid immune activation and drive symbiotic outcome is still not fully understood. This may involve the coincident detection of additional signaling molecules that provide specificity. Because of the metabolic costs of supporting symbionts, the level of symbiosis development is fine-tuned by a range of local and mobile signals that are activated by various RLKs. Beyond early, precontact symbiotic signaling, signal exchanges ensue throughout infection, nutrient exchange, and turnover of symbiosis. Here, we review the latest understanding of plant symbiosis signaling from the perspective of RLK-mediated pathways.


Assuntos
Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Simbiose , Ligantes , Peptídeos/metabolismo , Transdução de Sinais
9.
New Phytol ; 217(2): 552-557, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194644

RESUMO

Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/ß-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes.


Assuntos
Micorrizas/fisiologia , Oryza/microbiologia , Oryza/fisiologia , Transdução de Sinais , Simbiose/fisiologia , Glomeromycota/fisiologia , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/metabolismo
10.
New Phytol ; 220(4): 1135-1140, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29658105

RESUMO

Contents Summary 1135 I. Introduction 1135 II. Recruitment of plant metabolites and hormones as signals in AM symbiosis 1136 III. Phytohormones are regulators of AM symbiosis and targets of plant breeding 1137 IV. Variation in host response to AM symbiosis 1137 V. Outlook 1137 Acknowledgements 1139 References 1139 SUMMARY: Cereals (rice, maize, wheat, sorghum and the millets) provide over 50% of the world's caloric intake, a value that rises to > 80% in developing countries. Since domestication, cereals have been under artificial selection, largely directed towards higher yield. Throughout this process, cereals have maintained their capacity to interact with arbuscular mycorrhizal (AM) fungi, beneficial symbionts that associate with the roots of most terrestrial plants. It has been hypothesized that the shift from the wild to cultivation, and above all the last c. 50 years of intensive breeding for high-input farming systems, has reduced the capacity of the major cereal crops to gain full benefit from AM interactions. Recent studies have shed further light on the molecular basis of establishment and functioning of AM symbiosis in cereals, providing insight into where the breeding process might have had an impact. Classic phytohormones, targets of artificial selection during the generation of Green Revolution semi-dwarf varieties, have emerged as important regulators of AM symbiosis. Although there is still much to be learnt about the mechanistic basis of variation in symbiotic outcome, these advances are providing an insight into the role of arbuscular mycorrhiza in agronomic systems.


Assuntos
Domesticação , Grão Comestível/genética , Grão Comestível/microbiologia , Genômica , Micorrizas/fisiologia , Simbiose/fisiologia , Metaboloma , Melhoramento Vegetal
11.
Proc Natl Acad Sci U S A ; 112(21): 6754-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947154

RESUMO

Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling--although crucial for crop improvement--is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , Oryza/genética , Oryza/microbiologia , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Hidroxibenzoatos/metabolismo , Minerais/metabolismo , Oryza/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Supressão Genética , Simbiose/genética , Simbiose/fisiologia
12.
Plant Cell Physiol ; 58(10): 1689-1699, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016935

RESUMO

Arbuscular mycorrhizal symbiosis is an ancient interaction between plants and fungi of the phylum Glomeromycota. In exchange for photosynthetically fixed carbon, the fungus provides the plant host with greater access to soil nutrients via an extensive network of root-external hyphae. Here, to determine the impact of the symbiosis on the host ionome, the concentration of 19 elements was determined in the roots and leaves of a panel of 30 maize varieties, grown under phosphorus-limiting conditions, with or without inoculation with the fungus Funneliformis mosseae. Although the most recognized benefit of the symbiosis to the host plant is greater access to soil phosphorus, the concentration of a number of other elements responded significantly to inoculation across the panel as a whole. In addition, variety-specific effects indicated the importance of plant genotype to the response. Clusters of elements were identified that varied in a co-ordinated manner across genotypes, and that were maintained between non-inoculated and inoculated plants.


Assuntos
Glomeromycota/fisiologia , Metais/metabolismo , Micorrizas/fisiologia , Zea mays/metabolismo , Zea mays/microbiologia , Genótipo , Íons , Metaboloma , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Análise de Componente Principal , Zea mays/genética , Zea mays/fisiologia
13.
New Phytol ; 214(2): 632-643, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28098948

RESUMO

Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using 33 P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance.


Assuntos
Hifas/metabolismo , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Biomassa , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277808

RESUMO

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Plant Cell ; 24(10): 4236-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23073651

RESUMO

Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.


Assuntos
Micorrizas/genética , Oryza/genética , Proteínas de Transporte de Fosfato/fisiologia , Proteínas de Plantas/fisiologia , Simbiose/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Família Multigênica , Mutação , Micorrizas/crescimento & desenvolvimento , Fases de Leitura Aberta , Oryza/microbiologia , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Integr Plant Biol ; 57(11): 969-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466747

RESUMO

Phosphorus (P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal. In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal (AM) fungi and expression of different P transporter genes. Plants were grown in three different soil samples from a rice farm in the Philippines. The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that, in soil derived from a rice paddy, natural AM populations recovered within 6 weeks. The analysis of AM marker genes (AM1, AM3, AM14) and P transporter genes for the direct Pi uptake (PT2, PT6) and AM-mediated pathway (PT11, PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies. Interestingly, delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field. The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions.


Assuntos
Micorrizas , Oryza/genética , Oryza/microbiologia , Proteínas de Transporte de Fosfato/genética , Agricultura , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Variação Genética , Genótipo , Oryza/metabolismo , Fosfatos/metabolismo , Solo , Especificidade da Espécie , Simbiose
17.
Plant Cell Physiol ; 55(11): 1945-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25231957

RESUMO

Plants share photosynthetically fixed carbon with arbuscular mycorrhizal (AM) fungi to maintain their growth and nutrition. AM fungi are oleogenic fungi that contain numerous lipid droplets in their syncytial mycelia during most of their life cycle. These lipid droplets are probably used for supporting growth of extraradical mycelia and propagation; however, when and where the lipid droplets are produced remains unclear. To address these issues, we investigated the correlation between intracellular colonization stages and the appearance of fungal lipid droplets in roots by a combination of vital staining of fungal structures, selective staining of lipids and live imaging. We discovered that a surge of lipid droplets coincided with the collapse of arbuscular branches, indicating that arbuscule collapse and the emergence of lipid droplets may be associated processes. This phenomenon was observed in the model AM fungus Rhizophagus irregularis and the ancestral member of AM fungi Paraglomus occultum. Because the collapsing arbuscules were metabolically inactive, the emerged lipid droplets are probably derived from preformed lipids but not de novo synthesized. Our observations highlight a novel mode of lipid release by AM fungi.


Assuntos
Glomeromycota/fisiologia , Gotículas Lipídicas/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Simbiose
18.
19.
Plant J ; 69(5): 906-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22077667

RESUMO

The central structure of the symbiotic association between plants and arbuscular mycorrhizal (AM) fungi is the fungal arbuscule that delivers minerals to the plant. Our earlier transcriptome analyses identified two half-size ABCG transporters that displayed enhanced mRNA levels in mycorrhizal roots. We now show specific transcript accumulation in arbusculated cells of both genes during symbiosis. Presently, arbuscule-relevant factors from monocotyledons have not been reported. Mutation of either of the Oryza sativa (rice) ABCG transporters blocked arbuscule growth of different AM fungi at a small and stunted stage, recapitulating the phenotype of Medicago truncatula stunted arbuscule 1 and 2 (str1 and str2) mutants that are deficient in homologous ABCG genes. This phenotypic resemblance and phylogenetic analysis suggest functional conservation of STR1 and STR2 across the angiosperms. Malnutrition of the fungus underlying limited arbuscular growth was excluded by the absence of complementation of the str1 phenotype by wild-type nurse plants. Furthermore, plant AM signaling was found to be intact, as arbuscule-induced marker transcript accumulation was not affected in str1 mutants. Strigolactones have previously been hypothesized to operate as intracellular hyphal branching signals and possible substrates of STR1 and STR2. However, full arbuscule development in the strigolactone biosynthesis mutants d10 and d17 suggested strigolactones to be unlikely substrates of STR1/STR2. Interestingly, rice STR1 is associated with a cis-natural antisense transcript (antiSTR1). Analogous to STR1 and STR2, at the root cortex level, the antiSTR1 transcript is specifically detected in arbusculated cells, suggesting unexpected modes of STR1 regulation in rice.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Micorrizas/fisiologia , Oryza/genética , Proteínas de Plantas/metabolismo , Simbiose/genética , Transportadores de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica de Plantas , Lactonas/metabolismo , Mutação , Oryza/metabolismo , Oryza/microbiologia , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA