Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 594(7861): 66-70, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079137

RESUMO

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Assuntos
Lagos/química , Oxigênio/análise , Oxigênio/metabolismo , Temperatura , Animais , Mudança Climática , Ecossistema , Oceanos e Mares , Oxigênio/química , Fitoplâncton/metabolismo , Solubilidade , Fatores de Tempo
2.
J Phycol ; 58(4): 530-542, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578796

RESUMO

Mining and smelting activities have strongly influenced the Sudbury region (Ontario, Canada) since the late 19th century, leading to acidification and metal contamination in many local ecosystems. Regulations on restricting acidic emissions were enacted in the 1970s, after which a considerable volume of paleolimnological work was completed to study the impacts of acidification on Sudbury-region lakes and their subsequent biological recovery. Twenty years after the last regional diatom-based assessment, many lakes have undergone large changes in limnological variables, including increases in pH and dissolved organic carbon concentrations, as well as decreases in metal concentrations. Additionally, these lakes are under the potential impacts of newly emerging environmental stressors such as climate warming and road salt contamination. Here, we revisited a suite of Sudbury-region lakes (n = 80) to examine the relationships between their current water chemistry and diatom assemblages preserved in surface sediments using a canonical correspondence analysis. Although the pH gradient in our study lakes is shorter (pH ~1.4) than in earlier calibration studies conducted in this region, lake water pH was still identified as the strongest environmental variable shaping diatom distributions and was used to construct a robust inference model (R2boot = 0.73; RMSEP = 0.32). By assessing ecological changes experienced by a subset of these Sudbury-region lakes (n = 33) over the past few decades, we identified two major trends: an overall increase in diatom-inferred pH and a rise in the relative abundance of planktonic taxa. Our study provides useful insights into the autecology of major diatom taxa in acidified waters and highlights the importance of considering other anthropogenic stressors when assessing the recovery response of acid-impacted systems.


Assuntos
Diatomáceas , Lagos , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais , Ontário , Água
3.
Glob Chang Biol ; 27(19): 4615-4629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241940

RESUMO

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.


Assuntos
Lagos , Fitoplâncton , Clorofila , Clorofila A , Estações do Ano
4.
Environ Sci Technol ; 54(15): 9398-9407, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32597171

RESUMO

Widespread use of NaCl for road deicing has caused increased chloride concentrations in lakes near urban centers and areas of high road density. Chloride can be toxic, and water quality guidelines have been created to regulate it and protect aquatic life. However, these guidelines may not adequately protect organisms in low-nutrient, soft water lakes such as those underlain by the Precambrian Shield. We tested this hypothesis by conducting laboratory experiments on six Daphnia species using a soft water culture medium. We also examined temporal changes in cladoceran assemblages in the sediments of two small lakes on the Canadian Shield: one near a highway and the other >3 km from roads where salt is applied in the winter. Our results showed that Daphnia were sensitive to low chloride concentrations with decreased reproduction and increased mortality occurring between 5 and 40 mg Cl-/L. Analysis of cladoceran remains in lake sediments revealed changes in assemblage composition that coincided with the initial application of road salt in this region. In contrast, there were no changes detected in the remote lake. We found that 22.7% of recreational lakes in Ontario have chloride concentrations between 5 and 40 mg/L suggesting that cladoceran zooplankton in these lakes may already be experiencing negative effects of chloride.


Assuntos
Poluentes Químicos da Água , Zooplâncton , Animais , Lagos , Ontário , Cloreto de Sódio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
5.
Environ Sci Technol ; 51(22): 13248-13255, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29064242

RESUMO

Changing lake water total organic carbon (TOC) concentrations are of concern for lake management because of corresponding effects on aquatic ecosystem functioning, drinking water resources and carbon cycling between land and sea. Understanding the importance of human activities on TOC changes requires knowledge of past concentrations; however, water-monitoring data are typically only available for the past few decades, if at all. Here, we present a universal model to infer past lake water TOC concentrations in northern lakes across Europe and North America that uses visible-near-infrared (VNIR) spectroscopy on lake sediments. In the orthogonal partial least-squares model, VNIR spectra of surface-sediment samples are calibrated against corresponding surface water TOC concentrations (0.5-41 mg L-1) from 345 Arctic to northern temperate lakes in Canada, Greenland, Sweden and Finland. Internal model-cross-validation resulted in a R2 of 0.57 and a prediction error of 4.4 mg TOC L-1. First applications to lakes in southern Ontario and Scotland, which are outside of the model's geographic range, show the model accurately captures monitoring trends, and suggests that TOC dynamics during the 20th century at these sites were primarily driven by changes in atmospheric deposition. Our results demonstrate that the lake water TOC model has multiregional applications and is not biased by postdepositional diagenesis, allowing the identification of past TOC variations in northern lakes of Europe and North America over time scales of decades to millennia.


Assuntos
Carbono , Sedimentos Geológicos , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental , Europa (Continente) , Finlândia , Groenlândia , Humanos , Lagos , América do Norte , Ontário , Crescimento Demográfico , Escócia , Análise Espectral , Suécia
6.
J Phycol ; 52(5): 817-826, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27364993

RESUMO

A recent rise in the relative abundance of Discostella species (D. stelligera and D. pseudostelligera) has been well documented from sedimentary diatom assemblages across the Northern Hemisphere. This unprecedented change over the last ~150 years has been linked to rises in atmospheric temperatures, changes in ice cover, and/or increases in thermal stability, among other factors. The bi-weekly monitoring data from two boreal lakes at the Experimental Lakes Area (ELA) in northwestern Ontario were analyzed across seasons (spring, summer, and fall) and decades (1970s-2000s). We found that Discostella species are primarily spring/early summer bloomers (i.e., late April to June) in these lakes and changes in concentrations of Discostella over time were most pronounced in the spring or early summer months. Increases in Discostella abundance over time may be linked to earlier ice-off and a longer period of spring turnover, resulting from increased winter and spring temperatures. It is also possible that a trophic mismatch between the spring diatom bloom and zooplankton is occurring, thus reducing diatom loss rates, and resulting in greater overall abundance. Moreover, the spring dominance of Discostella in our study lakes occurred at a time of the year when nutrient concentrations were at their highest seasonally, suggesting that these taxa are neither limited directly by nutrients, nor responding to enhanced stratification during the summer months in these lakes.


Assuntos
Biodiversidade , Diatomáceas/fisiologia , Lagos , Estações do Ano , Ontário , Dinâmica Populacional , Temperatura
7.
Proc Biol Sci ; 282(1798): 20142449, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25411451

RESUMO

Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis, a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native (Chaoborus spp.) and introduced (Bythotrephes longimanus) zooplanktivores, to which Holopedium, with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low.


Assuntos
Cálcio/análise , Cladocera/fisiologia , Cadeia Alimentar , Lagos/química , Zooplâncton/fisiologia , Animais , Dípteros/fisiologia , Modelos Biológicos , Ontário , Dinâmica Populacional , Especificidade da Espécie
8.
J Environ Manage ; 151: 343-52, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25585147

RESUMO

Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools.


Assuntos
Cianobactérias/isolamento & purificação , Lagos/microbiologia , Microbiologia da Água , Canadá , Clima , Cianobactérias/classificação , Modelos Biológicos , Ontário
9.
Sci Total Environ ; 835: 155426, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469860

RESUMO

Microplastics are ubiquitous in the environment; however, few studies have examined their abundance in atmospheric deposition in pristine environments, remote from anthropogenic emission sources. In the current study, atmospheric deposition samples were collected for 13 months (February 2019-March 2020) from four precipitation chemistry monitoring stations located in Muskoka-Haliburton, south-central Ontario, Canada. Anthropogenic particles (i.e., synthetic particles but not necessarily plastic) were observed at each station with an average deposition rate of 57 particles/m2/day (range from 32 to 73 particles/m2/day). Of the anthropogenic particles identified, 12% were plastic resulting in an average microplastic (mp) deposition rate of 7 mp/m2/day (range 4-9 mp/m2/day). Approximately 85% of the particles were fibres with fragments comprising only 15%. The most common particle colours were blue and red with 50% of the fragments and 84% of fibres being one of these two colours. Raman spectroscopy determined that polyamide and polyethylene terephthalate were the two most abundant polymers at 24% and 19%, respectively. Across the four stations anthropogenic particle concentrations were significantly related to wind speed (rs = 0.32 to 0.62) and temperature (rs = -0.53 to -0.84), with a noticeable increase in particle concentration when wind shifted from the west (average of 7.2 mp/L) to the south-east (average of 11.5 mp/L). Faster wind speed resulted in a larger airshed source area, and the seasonal effect associated with changes in temperature and wind direction led to changes in potential source regions that were contributing microplastics, such as the Greater Toronto Area (>200 km away).


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Ontário , Plásticos , Análise Espectral Raman , Poluentes Químicos da Água/análise
10.
J Paleolimnol ; 66(4): 389-405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720408

RESUMO

The spiny water flea (Bythotrephes cederströmii), a freshwater crustacean considered to be the world's best-studied invasive zooplankter, was first recorded in North America in the Laurentian Great Lakes during the 1980s. Its arrival is widely considered to be the result of ocean-going cargo ships that translocated contaminated ballast water from Eurasia to the Great Lakes during the 1970-1980s. The subsequent first discovery of the species in inland lakes is consistent with the hypothesis that propagules dispersed initially from established Great Lakes populations. Here we present evidence of exoskeletal remains, including mandibles, tail spines, and resting eggs, in 210Pb-dated lake sediment cores, which suggests that B. cederströmii was already resident in four inland North American lakes (two in Minnesota, USA; two in Ontario, Canada) by at least the early 1900s. Densities of exoskeletal remains were low and relatively steady from first appearance until about 1990, after which time they increased in all cores. The earliest evidence that we found was a mandible at 33-cm depth (pre-1650) in the sediments of Three Mile Lake, Ontario, Canada. These unexpected findings challenge the current paradigm of B. cederströmii invasion, renew uncertainty about the timing and sequence of its colonization of North American lakes, and potentially question our ability to detect invasive species with traditional sampling methods. We attempted to eliminate errors in the dated stratigraphies of the exoskeletal remains that might have been introduced either methodologically (e.g., core-wall smearing) or naturally (e.g., bioturbation). Nonetheless, given the very low numbers of subfossils encountered, questions remain about the possible artifactual nature of our observations and therefore we regard our results as 'preliminary findings' at this time.

11.
Environ Res Lett ; 16(10): 1-13, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35874907

RESUMO

Surface water browning, the result of increasing concentrations of dissolved organic matter (DOM), has been widespread in northern ecosystems in recent decades. Here, we assess a database of 426 undisturbed headwater lakes and streams in Europe and North America for evidence of trends in DOM between 1990 and 2016. We describe contrasting changes in DOM trends in Europe (decelerating) and North America (accelerating), which are consistent with organic matter solubility responses to declines in sulfate deposition. While earlier trends (1990-2004) were almost entirely related to changes in atmospheric chemistry, climatic and chemical drivers were equally important in explaining recent DOM trends (2002-2016). We estimate that riverine DOM export from northern ecosystems increased by 27% during the study period. Increased summer precipitation strengthened upward dissolved organic carbon trends while warming apparently damped browning. Our results suggest strong but changing influences of air quality and climate on the terrestrial carbon cycle, and on the magnitude of carbon export from land to water.

12.
Ecol Lett ; 13(4): 453-63, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20100243

RESUMO

Environmental variability in space and time is a primary mechanism allowing species that share resources to coexist. Fluctuating conditions are a double edged sword for diversity, either promoting coexistence through temporal niche partitioning or excluding species by stochastic extinctions. The net effect of environmental variation on diversity is largely unknown. We examined the association between zooplankton species richness in lakes and environmental variability on interannual, seasonal and shorter time scales, as well as long-term average conditions. We analyzed data on physical, chemical and biological limnology in 53 temperate zone lakes in North America and Europe sampled over a combined 1042 years. Large fluctuations in pH, phosphorus and dissolved organic carbon concentration on different time scales were associated with reduced zooplankton species richness. More species were found in lakes that showed greater temperature variation on all time scales. Environmental variability on different time scales showed similar or, in some cases, stronger associations with zooplankton species richness compared with long-term average conditions. Our results suggest that temporal fluctuations in the chemical environment tend to exclude zooplankton species while temperature variability promotes greater richness. The results indicate that anthropogenic increases in temporal variability of future climates may have profound effects on biodiversity.


Assuntos
Biodiversidade , Clima , Zooplâncton , Animais , Carbono/análise , Mudança Climática , Europa (Continente) , Água Doce/análise , Concentração de Íons de Hidrogênio , América do Norte , Análise de Componente Principal , Temperatura
13.
Sci Total Environ ; 726: 138400, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315845

RESUMO

Long-term patterns in dissolved organic carbon (DOC) concentrations in 49 eastern Canadian lakes from four sites were re-examined with a ~ 35-year (~1980-2015) dataset. The study sites were Dorset (number of lakes, n = 8), Experimental Lakes Area (ELA, n = 4), Kejimkujik (n = 26) and Yarmouth (n = 11). Lake DOC patterns were synchronous within each site. However, comparisons of DOC patterns across sites showed that they were synchronous only between the Kejimkujik and Yarmouth locations. Hence, these two sites were pooled into a single Nova Scotia site (NS). Increases in DOC concentration were evident in Dorset, Ontario from 1988 (r2 = 0.78, p < 0.001) and NS from 2000 (r2 = 0.43, p = 0.006). DOC at the ELA in northwestern Ontario had a different pattern compared to the other sites, i.e., DOC had increased earlier (1983-2000), and then, unlike Dorset and NS, neither an increase nor decrease was detected between 2001 and 2015 (p = 0.78). Precipitation and sulfur deposition explained the greatest variance in DOC patterns at the Dorset and NS sites (i.e., precipitation: 21-49% and sulfur deposition: 24-54%). Precipitation was the most important driver of DOC at the ELA. Our results indicate that all the sites have gone through a process of increasing DOC, but at different times. The stabilizing pattern at the ELA since 2001 may suggest that DOC concentrations in ELA lakes have reached, or are approaching a new equilibrium, a phenomenon that was not observed at the other sites. Also, the increase in DOC was not always associated with declining sulfur deposition (e.g., ELA). Therefore, we conclude that there was considerable variation in DOC patterns across this large geographic region of Canada and potential drivers of these patterns were not consistent across these diverse sites.

14.
Sci Total Environ ; 725: 138347, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32304963

RESUMO

Since the implementation of large-scale lake monitoring in the ~1980s, water color and dissolved organic carbon (DOC) concentrations have increased in many northern lakes (i.e., lake browning), impacting the functioning of aquatic ecosystems. In regions that formerly experienced high levels of acid deposition, this browning trend has been largely attributed to the recovery from the impacts of past acid deposition. However, the extent to which DOC levels have now returned to naturally higher, pre-industrial conditions is still poorly understood. In this study, we assessed whether DOC levels are still influenced by acid deposition in lakes near Sudbury, Ontario, a region that has been heavily affected by sulfur dioxide emissions from local metal smelting during the 20th century. We analyzed water chemistry monitoring data (1981-2018), together with comparisons between modern and pre-industrial DOC levels inferred from sediment spectroscopy, for 51 acid-sensitive and 24 buffered reference lakes across the Sudbury landscape. Since 1981, DOC concentrations doubled in acid-sensitive lakes, with a mean increase of +1.6 mg/L, whereas in more buffered reference lakes, mean DOC levels increased by only 0.8 mg/L. Similarly, sediment-inferred DOC trends indicate that current DOC levels are, on average, ~22% below pre-industrial levels in acid sensitive systems compared to only ~10% in buffered lakes. Weakening correlations between DOC and acidification-related water chemistry variables (e.g., pH, alkalinity, metals) further indicate a diminishing influence of acid deposition on DOC in Sudbury lakes. These results highlight the strong impact that acid deposition has historically had on lake-water DOC dynamics in this region, but also suggest that DOC levels are approaching natural baseline levels in less acid-sensitive lakes, and that other drivers, such as changes in climate or vegetation cover, are now becoming the dominant controls on changes in DOC concentrations.

15.
Sci Rep ; 9(1): 16676, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723150

RESUMO

Dissolved organic carbon (DOC) concentrations and water colour are increasing in many inland waters across northern Europe and northeastern North America. This inland-water "browning" has profound physical, chemical and biological repercussions for aquatic ecosystems affecting water quality, biological community structures and aquatic productivity. Potential drivers of this "browning" trend are complex and include reductions in atmospheric acid deposition, changes in land use/cover, increased nitrogen deposition and climate change. However, because of the overlapping impacts of these stressors, their relative contributions to DOC dynamics remain unclear, and without appropriate long-term monitoring data, it has not been possible to determine whether the ongoing "browning" is unprecedented or simply a "re-browning" to pre-industrial DOC levels. Here, we demonstrate the long-term impacts of acid deposition and climate change on lake-water DOC concentrations in low and high acid-deposition areas using infrared spectroscopic techniques on ~200-year-long lake-sediment records from central Canada. We show that acid deposition suppressed naturally higher DOC concentrations during the 20th century, but that a "re-browning" of lakes is now occurring with emissions reductions in formerly high deposition areas. In contrast, in low deposition areas, climate change is forcing lakes towards new ecological states, as lake-water DOC concentrations now often exceed pre-industrial levels.

16.
Sci Rep ; 9(1): 10450, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320731

RESUMO

Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.

17.
Sci Total Environ ; 626: 412-422, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358136

RESUMO

Formerly acidified lakes and watersheds can become more productive when recovering from acidity, especially when exposed to anthropogenic disturbance and increased nutrient loading. Occasional toxic cyanobacterial blooms and other signs of eutrophication have been observed for a decade in lakes located in the Sudbury, Ontario, mining area that was severely affected by acid deposition before the start of smelter emission reductions in the 1970s. Oligotrophic Long Lake and its upstream lakes have been exposed to waste water input and development impacts from the City of Greater Sudbury and likely have a legacy of nutrient enrichment in their sediment. Based on observations from other published studies, we hypothesized that P, which was previously adsorbed by metals liberated during acidification caused by the mining activities, is now being released from the sediment as internal P loading contributing to increased cyanobacteria biomass. Support for this hypothesis includes (1) lake observations of oxygen depletion and hypolimnetic anoxia and slightly elevated hypolimnetic total P concentration and (2) P, Al, and Fe fractionation of two sediment layers (0-5, 5-10 cm), showing elevated concentrations of TP and iron releasable P (BD-fraction), decreased concentrations in fractions associated with Al, and fraction ratios indicating decreased sediment adsorption capacity. The comparison with two moderately enriched lakes within 200 km distance, but never directly affected by mining operations, supports the increasing similarity of Long Lake surficial sediment adsorption capacity with that of unaffected lakes. There is cause for concern that increased eutrophication including the proliferation of cyanobacteria of formerly acidic lakes is wide-spread and occurs wherever recovery coincides with anthropogenic disturbances and physical changes related to climate change.

18.
ISME J ; 9(12): 2541-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26057844

RESUMO

Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Poluentes Ambientais/análise , Mercúrio/análise , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Poluentes Ambientais/metabolismo , Poluição Ambiental/história , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , História do Século XIX , História do Século XX , Humanos , Mercúrio/metabolismo , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Alinhamento de Sequência
19.
Environ Pollut ; 173: 52-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202282

RESUMO

Spatial and temporal changes in mercury (Hg) concentrations and organic carbon in lake sediments were examined from the Hudson Bay Lowlands to investigate whether Hg deposition to sediments is related to indicators of autochthonous production. Total organic carbon, "S2" carbon (mainly algal-derived OC), C:N and ∂(13)C indicators suggest an increase in autochthonous productivity in recent decades. Up-core profiles of S2 concentrations and fluxes were significantly correlated with Hg suggesting that varying algal matter scavenging of Hg from the water column may play an important role in the temporal profiles of Hg throughout the sediment cores. Absence of significant relationship between total Hg and methyl Hg (MeHg) in surficial sediments suggested that inorganic Hg supply does not limit MeHg production. MeHg and OC were highly correlated across lakes in surface and deep sediment layers, indicating that sediment organic matter content explains part of the spatial variation in MeHg concentrations between lakes.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Monitoramento Ambiental , Ontário
20.
Sci Total Environ ; 407(16): 4696-702, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19447474

RESUMO

The concentration of methylmercury (MeHg) in aquatic ecosystems is the net result of the highly dynamic abiotic and biotic processes of mercury methylation and demethylation. In this study, we conduct an examination of the net fluvial loading of methylmercury (MeHg(Net)=MeHg(Watershed)-MeHg(Lake outflow)) across a 3 year time frame in both a dystrophic lake and an oligotrophic lake. A significant portion of MeHg(Net) variance in both lakes could be attributed to a seasonal pattern (11.4%, p=0.009; oligotrophic, and 27.0%, p<0.0001; dystrophic) which in both cases, was most correlated with air temperature. The dystrophic lake appeared to be a net source of methylmercury (MeHg(Net)=-1.9+/-0.3 mg MeHg d(-1)) while the oligotrophic lake appeared to be a net sink (MeHg(Net)=0.4+/-0.2 mg MeHg d(-1)), indicating that there was net methylation in the dystrophic lake and net demethylation in the oligotrophic lake. Higher MeHg loading to the lakes occurred during the summer and between seasons there was a difference in MeHg(Net) of 1.1+/-0.3 mg MeHg d(-1) and 3.1+/-0.6 mg MeHg d(-1). Seasonal patterns of MeHg(Net) in the oligotrophic lake lagged behind the dystrophic lake by 39 days. The short term variation in MeHg(Net) was dominated by precipitation (t=2.73, p=0.008; dystrophic, t=2.53, p=0.017; oligotrophic).


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/estatística & dados numéricos , Ontário , Análise de Regressão , Rios/química , Estações do Ano , Temperatura , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA