Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cancer Res Ther ; 20(1): 383-388, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554350

RESUMO

AIM: In this study, efficacy of collapsed cone algorithm-generated intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) were evaluated for treatment of thoracic esophageal cancer. MATERIALS AND METHODS: Ten previously treated patients with VMAT were considered for evaluation. The planning parameters were evaluated in terms of max dose, mean dose, Homogeneity Index, Conformity Index for planning target volume, and organ at risk doses. Total monitor unit, treatment time, and gamma passing index were also reported. RESULTS: The target dose coverage of the VMAT and IMRT plans achieved the clinical dosimetric criteria for all ten patients in the evaluation. Under the condition of equivalent target dose distribution, the VMAT plan's Conformity Index, monitor unit, treatment time, and gamma passing index rate were superior than in the IMRT plan, and the result was statistically significant. CONCLUSION: Collapsed cone algorithm-based VMAT can have a more effective and better approach for esophageal cancer than IMRT.


Assuntos
Neoplasias Esofágicas , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Esofágicas/radioterapia , Tórax , Algoritmos , Órgãos em Risco
2.
J Biomed Phys Eng ; 13(6): 503-514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38148960

RESUMO

Background: In Radiotherapy, computation of dose is important since in a small field with heterogeneity, dose is usually computed with discrepancies. Objective: The present study was aimed to evaluate the dosimetry of treatment planning algorithms in lung equivalent heterogeneous medium for Volumetric Modulated Arc Therapy (VMAT) with step and shoot Intensity-Modulated Radiation Therapy (ss-IMRT), and dynamic Intensity-Modulated Radiation Therapy (d-IMRT). Material and Methods: In this experimental study, Computerized Imaging Reference System (CIRS) phantom was used with an inhomogeneous Racemosa wood cylinder for two types of tumors, namely, Left Lung Central Tumor (LCT) and Left Lung Peripheral Tumor (LPT) in the CIRS left lung cavity. The computed tomography (CT) datasets were employed with the generation of VMAT, d-IMRT and ss-IMRT plans for the LCT and LPT irradiated with 6 MV photon beams. In this study, the accuracy and efficacy of two algorithms: Monte Carlo (MC) and the Pencil Beam (PB), from the Monaco treatment planning system (TPS), were tested by using Gafchromic EBT3 films and CIRS thorax phantom. Results: Regardless of treatment techniques, both algorithms exhibited higher divergence in LPT than LCT. In both LCT and LPT, the highest deviation was near the tumor-lung junction. However, the deviation was higher in the PB algorithm than MC algorithm, with a minimally acceptable variation of -0.8%. Conclusion: The MC algorithm shows more consistency for EBT3 measured dose in lung equivalent heterogeneous medium. However, accurate dose predictions are complicated due to electronic disequilibrium within and at the interface of inhomogeneity. These constraints may cause variations from the anticipated outcomes of the treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA