Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Angew Chem Int Ed Engl ; 61(17): e202202302, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35176203

RESUMO

Molecularly crowded coacervate micro-droplets are useful protocell constructs but the absence of a physical membrane limits their application as cytomimetic models. Auxiliary surface-active agents have been harnessed to stabilize the coacervate droplets by irreversible shell formation but endogenous processes of reversible membranization have received minimal attention. Herein, we describe a dynamic alginate/silk coacervate-based protocell model in which membrane-less droplets are reversibly reconfigured and inflated into semipermeable coacervate vesicles by spontaneous self-organization of amphiphilic silk polymers at the droplet surface under non-neutral charge conditions in the absence of auxiliary agents. We show that membranization can be reversibly controlled endogenously by programming the pH within the protocells using an antagonistic enzyme system such that structural reconfigurations in the protocell microstructure are coupled to the trafficking of water-soluble solutes. Our results open new perspectives in the design of hybrid protocell models with dynamical structural properties.


Assuntos
Células Artificiais , Células Artificiais/química , Seda
2.
Angew Chem Int Ed Engl ; 59(17): 6853-6859, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32078224

RESUMO

Immobilization of compartmentalized microscale objects in 3D hydrogels provides a step towards the modular assembly of soft functional materials with tunable architectures and distributed functionalities. Herein, we report the use of a combination of micro-compartmentalization, immobilization, and modularization to fabricate and assemble hydrogel-based microreactor assemblies comprising millions of functionalized polysaccharide-polynucleotide coacervate droplets. The heterogeneous hydrogels can be structurally fused by interfacial crosslinking and coupled as input and output modules to implement a UV-induced photocatalytic/peroxidation nanoparticle/DNAzyme reaction cascade that generates a spatiotemporal fluorescence read-out depending on the droplet number density, intensity of photoenergization, and chemical flux. Our approach offers a route to heterogeneous hydrogels with endogenous reactivity and reconfigurable architecture, and provides a step towards the development of soft modular materials with programmable functionality.

3.
Nat Mater ; 17(12): 1145-1153, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297813

RESUMO

Although several new types of synthetic cell-like entities are now available, their structural integration into spatially interlinked prototissues that communicate and display coordinated functions remains a considerable challenge. Here we describe the programmed assembly of synthetic prototissue constructs based on the bio-orthogonal adhesion of a spatially confined binary community of protein-polymer protocells, termed proteinosomes. The thermoresponsive properties of the interlinked proteinosomes are used collectively to generate prototissue spheroids capable of reversible contractions that can be enzymatically modulated and exploited for mechanochemical transduction. Overall, our methodology opens up a route to the fabrication of artificial tissue-like materials capable of collective behaviours, and addresses important emerging challenges in bottom-up synthetic biology and bioinspired engineering.


Assuntos
Células Artificiais , Temperatura , Resinas Acrílicas/química , Animais , Bovinos , Mecanotransdução Celular , Ácidos Polimetacrílicos/química , Soroalbumina Bovina/química , Biologia Sintética
4.
Angew Chem Int Ed Engl ; 58(19): 6333-6337, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30861271

RESUMO

Collective behaviour in mixed populations of synthetic protocells is an unexplored area of bottom-up synthetic biology. The dynamics of a model protocell community is exploited to modulate the function and higher-order behaviour of mixed populations of bioinorganic protocells in response to a process of artificial phagocytosis. Enzyme-loaded silica colloidosomes are spontaneously engulfed by magnetic Pickering emulsion (MPE) droplets containing complementary enzyme substrates to initiate a range of processes within the host/guest protocells. Specifically, catalase, lipase, or alkaline phosphatase-filled colloidosomes are used to trigger phagocytosis-induced buoyancy, membrane reconstruction, or hydrogelation, respectively, within the MPE droplets. The results highlight the potential for exploiting surface-contact interactions between different membrane-bounded droplets to transfer and co-locate discrete chemical packages (artificial organelles) in communities of synthetic protocells.


Assuntos
Células Artificiais/metabolismo , Modelos Biológicos , Fagocitose , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipase/metabolismo , Trioleína/metabolismo
5.
Small ; 14(26): e1800739, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29806157

RESUMO

Acoustic standing waves offer an excellent opportunity to trap and spatially manipulate colloidal objects. This noncontact technique is used for the in situ formation and patterning in aqueous solution of 1D or 2D arrays of pH-responsive coacervate microdroplets comprising poly(diallyldimethylammonium) chloride and the dipeptide N-fluorenyl-9-methoxy-carbonyl-D-alanine-D-alanine. Decreasing the pH of the preformed droplet arrays results in dipeptide nanofilament self-assembly and subsequent formation of a micropatterned supramolecular hydrogel that can be removed as a self-supporting monolith. Guest molecules such as molecular dyes, proteins, and oligonucleotides are sequestered specifically within the coacervate droplets during acoustic processing to produce micropatterned hydrogels containing spatially organized functional components. Using this strategy, the site-specific isolation of multiple enzymes to drive a catalytic cascade within the micropatterned hydrogel films is exploited.

6.
Soft Matter ; 14(29): 5950-5954, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30010173

RESUMO

Photo-generated nitric oxide radicals (NO˙) derived from sodium nitroprusside dihydrate (SNP) are employed for the construction of supramolecular hydrogels based on an amino acid derivative precursor, N-fluorenylmethyloxycarbonyl tyrosine phosphate (FYP), which through dephosphorylation produces the gelator, N-fluorenylmethyloxycarbonyl tyrosine (FY). Self-assembly of the amphiphilic gelator yields high-aspect ratio nanofilaments that entangle to form self-supporting, viscoelastic hydrogels. The presence of photolyzed SNP yields periodically twisted nanofilaments with opposite chirality to filaments formed through conventional hydrogelation routes.

7.
Chemistry ; 21(25): 9008-13, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25959990

RESUMO

The synthesis and confinement of graphitic nanoparticles (carbon dots) in the nanoscale solvent channels of cross-linked lysozyme single crystals is used to prepare novel biohybrid luminescent materials. Co-sequestration of acridine orange within the biohybrid crystals from acidic or neutral solutions yields FRET-mediated phosphors emitting white or green light, respectively. The results offer a route to new types of tuneable multicolour luminescent materials based on microcrystalline host-guest energy-transfer systems.


Assuntos
Carbono/química , Substâncias Luminescentes/síntese química , Muramidase/química , Nanopartículas/química , Pontos Quânticos/química , Luz , Luminescência , Substâncias Luminescentes/química
8.
J Am Chem Soc ; 136(25): 9225-34, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24905973

RESUMO

The design and construction of higher-order structure and function in proteinosome microcompartments enclosed by a cross-linked membrane of amphiphilic bovine serum albumin/poly(N-isopropylacrylamide) (BSA-NH2/PNIPAAm) nanoconjugates is described. Three structure/function relationships are investigated: (i) differential chemical cross-linking for the control of membrane disassembly and regulated release of encapsulated genetic polymers; (ii) enzyme-mediated hydrogel structuring of the internal microenvironment to increase mechanical robustness and generate a molecularly crowded reaction environment; and (iii) self-production of a membrane-enclosing outer hydrogel wall for generating protease-resistant forms of the protein-polymer protocells. Our results highlight the potential of integrating aspects of supramolecular and polymer chemistry into the design and construction of novel bioinspired microcompartments as a step toward small-scale materials systems based on synthetic cellularity.


Assuntos
Resinas Acrílicas/química , Reagentes de Ligações Cruzadas/química , Nanoconjugados/química , Soroalbumina Bovina/química , Tensoativos/química , Animais , Bovinos , Reagentes de Ligações Cruzadas/síntese química , DNA/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/síntese química
9.
Small ; 10(9): 1830-40, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24515342

RESUMO

Molecularly crowded, polyelectrolyte/ribonucleotide-enriched membrane-free coacervate droplets are transformed into membrane-bounded sub-divided vesicles by using a polyoxometalate-mediated surface-templating procedure. The coacervate to vesicle transition results in reconstruction of the coacervate micro-droplets into novel three-tiered micro-compartments comprising a semi-permeable negatively charged polyoxometalate/polyelectrolyte outer membrane, a sub-membrane coacervate shell, and an internal aqueous lumen. We demonstrate that organic dyes, ssDNA, magnetic nanoparticles and enzymes can be concentrated into the interior of the micro-compartments by sequestration into the coacervate micro-droplets prior to vesicle formation. The vesicle-encapsulated proteins are inaccessible to proteases in the external medium, and can be exploited for the spatial localization and coupling of two-enzyme cascade reactions within single or between multiple populations of hybrid vesicles dispersed in aqueous media.


Assuntos
Células Artificiais/química , Membranas Artificiais , Compostos de Tungstênio/farmacologia , Trifosfato de Adenosina/química , Células Artificiais/efeitos dos fármacos , Eletrólitos/química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Fenômenos Magnéticos
10.
Nanoscale Adv ; 6(9): 2231-2233, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694459

RESUMO

Fulminating gold, the first high-explosive compound to be discovered, disintegrates into a mysterious cloud of purple smoke, the nature of which has been speculated upon since its discovery in the 15th century. In this work, we show that the colour of the smoke is due to the presence of gold nanoparticles.

11.
Adv Mater ; 36(31): e2404607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762764

RESUMO

The design and construction of continuous flow biochemical reactors comprising immobilized biocatalysts have generated great interest in the efficient synthesis of value-added chemicals. Living cells use compartmentalization and reaction-diffusion processes for spatiotemporal regulation of biocatalytic reactions, and implementing these strategies into continuous flow reactors can offer new opportunities in reactor design and application. Herein, the fabrication of protocell-based continuous flow reactors for enzyme and whole-cell mediated biocatalysis is demonstrated. Semipermeable membranized coacervate vesicles are employed as model protocells that spontaneously sequester enzymes or accumulate living bacteria to produce embodied microreactors capable of single- or multiple-step catalytic reactions. By packing millions of the enzyme/bacteria-containing coacervate vesicles in a glass column, a facile, cost-effective, and modular methodology capable of performing oxidoreductase, peroxidase and lipolytic reactions, enzyme-mediated L-DOPA synthesis, and whole-cell glycolysis under continuous flow conditions, is demonstrated. It is shown that the protocell-nested enzymes and bacterial cells exhibit enhanced activities and stability under deleterious operating conditions compared with their non-encapsulated counterparts. These results provide a step toward the engineering of continuous flow reactors based on cell-like microscale agents and offer opportunities in the development of green and sustainable industrial bioprocessing.


Assuntos
Células Artificiais , Biocatálise , Reatores Biológicos , Células Artificiais/metabolismo , Células Artificiais/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glicólise , Enzimas/metabolismo , Enzimas/química
12.
Small ; 9(3): 357-62, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23027575

RESUMO

The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments.


Assuntos
Células Artificiais/química , Enzimas/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Enzimas/química
13.
Chemistry ; 19(39): 13030-9, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23934688

RESUMO

Stable colloidal dispersions of polyaniline (PAni) nanofibers with controlled lengths from about 200 nm-1.1 µm and narrow length distributions (Lw/Ln < 1.04; Lw = weight average micelle length, Ln = number average micelle length) were prepared through the template-directed synthesis of PAni using monodisperse, solution-self-assembled, cylindrical, block copolymer micelles as nanoscale templates. These micelles were prepared through a crystallization-driven living self-assembly method from a poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) block copolymer (PFS25 -b-P2VP425). This material was initially self-assembled in iPrOH to form cylindrical micelles with a crystalline PFS core and a P2VP corona and lengths of up to several micrometers. Sonication of this sample then yielded short cylinders with average lengths of 90 nm and a broad length distribution (Lw/Ln = 1.32). Cylindrical micelles of PFS25 -b-P2VP425 with controlled lengths and narrow length distributions (Lw/Ln < 1.04) were subsequently prepared using thermal treatment at specific temperatures between 83.5 and 92.0 °C using a 1D self-seeding process. These samples were then employed in the template-directed synthesis of PAni nanofibers through a two-step procedure, where the micellar template was initially stabilised by deposition of an oligoaniline coating followed by addition of a polymeric acid dopant, resulting in PAni nanofibers in the emeraldine salt (ES) state. The ES-PAni nanofibers were shown to be conductive by scanning conductance microscopy, whereas the precursor PFS25-b-P2VP425 micelle templates were found to be dielectric in character.

14.
Biomacromolecules ; 14(5): 1287-98, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23534615

RESUMO

Biomaterials that can stimulate stem cell differentiation without growth factor supplementation provide potent and cost-effective scaffolds for regenerative medicine. We hypothesize that a scaffold prepared from cellulose and silk blends can direct stem cell chondrogenic fate. We systematically prepared cellulose blends with silk at different compositions using an environmentally benign processing method based on ionic liquids as a common solvent. We tested the effect of blend compositions on the physical properties of the materials as well as on their ability to support mesenchymal stem cell (MSC) growth and chondrogenic differentiation. The stiffness and tensile strength of cellulose was significantly reduced by blending with silk. The characterized materials were tested using MSCs derived from four different patients. Growing MSCs on a specific blend combination of cellulose and silk in a 75:25 ratio significantly upregulated the chondrogenic marker genes SOX9, aggrecan, and type II collagen in the absence of specific growth factors. This chondrogenic effect was neither found with neat cellulose nor the cellulose/silk 50:50 blend composition. No adipogenic or osteogenic differentiation was detected on the blends, suggesting that the cellulose/silk 75:25 blend induced specific stem cell differentiation into the chondrogenic lineage without addition of the soluble growth factor TGF-ß. The cellulose/silk blend we identified can be used both for in vitro tissue engineering and as an implantable device for stimulating endogenous stem cells to initiate cartilage repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Celulose/química , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Seda/química , Engenharia Tecidual/métodos , Agrecanas/genética , Agrecanas/metabolismo , Materiais Biocompatíveis/química , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Líquidos Iônicos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Resistência à Tração , Alicerces Teciduais
15.
Chemistry ; 18(19): 6008-14, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22461410

RESUMO

Transparent self-standing supramolecular hydrogels were readily prepared by the potassium-ion-mediated self-organization of guanosine and 8-bromoguanosine whilst the individual components precipitated within a few hours. VT-NMR spectroscopy showed that bromoguanosine was a superior gelator compared to guanosine. XRD analysis showed that gel formation was caused by stacked G-quartets. AFM analysis revealed dendritic architectures of the nanofibers in the two-component hydrogel network. DSC profiles showed that the hybrid hydrogels underwent sol-gel transition at lower temperature than the pure guanosine and bromoguanosine hydrogels. Interestingly, bioactive dyes, such as rose bengal, rhodamine-6-G, and fluorescein, could be diffused and released in a controlled manner. UV/Vis absorption and fluorescence spectroscopy and CLSM were used to investigate the diffusion behavior of dyes in the hydrogel network. These dyes exhibited strong birefringence in the gel network (0.07-0.1) as a result of the anisotropic organization.


Assuntos
Corantes/química , Guanosina/análogos & derivados , Guanosina/química , Hidrogéis/química , Birrefringência , Difusão , Guanosina/síntese química , Microscopia de Força Atômica , Microscopia Confocal , Estrutura Molecular , Potássio/química , Espectrometria de Fluorescência
16.
Chemphyschem ; 13(12): 2956-63, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22865797

RESUMO

The properties of graphene oxide (GO) and DNA-stabilised reduced graphene-oxide (rGO) sheets as electron-transfer mediators in partially blocked electrodes are evaluated employing electrochemical impedance spectroscopy. Evidences obtained from UV/Vis, Raman and FTIR spectroscopies, as well as atomic force microscopy, confirm that the reduction of exfoliated GO single sheets by hydrazine yields partially reduced graphene oxide featuring a high defect density. Two-dimensional assemblies of GO and rGO were formed through electrostatic adsorption at Au electrodes, sequentially modified with 11-mercaptoundecanoic acid (MUA) and poly-diallyldimethylammonium chloride (PDADMAC). The MUA:PDADMAC generates a strong blocking layer to the electron-transfer reaction involving the ferri/ferrocyanide redox couple. This blocking behaviour is not significantly affected upon adsorption of GO. However, adsorption of a sub-monolayer of rGO decreases the charge-transfer resistance by more than two orders of magnitude. Analysis of cyclic voltammograms and impedance spectra suggests that electron transfer in rGO assemblies is mediated by occupied states located just below the redox Fermi energy of the probe. These findings are discussed in the context of on-going controversies regarding the electrochemical reactivity of sp(2)-carbon basal planes.

17.
Gels ; 7(3)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34563032

RESUMO

The ability to assemble chemically different gelator molecules into complex supramolecular hydrogels provides excellent opportunities to construct functional soft materials. Herein, we demonstrate the formation of hybrid nucleotide-amino acid supramolecular hydrogels. These are generated by the silver ion (Ag+)-triggered formation of silver-guanosine monophosphate (GMP) dimers, which undergo self-assembly through non-covalent interactions to produce nanofilaments. This process results in a concomitant pH reduction due to the abstraction of a proton from the guanine residue, which triggers the in situ gelation of a pH-sensitive amino acid, N-fluorenylmethyloxycarbonyl tyrosine (FY), to form nucleotide-amino acid hybrid hydrogels. Alterations in the supramolecular structures due to changes in the assembly process are observed, with the molar ratio of Ag:GMP:FY affecting the assembly kinetics, and the resulting supramolecular organisation and mechanical properties of the hydrogels. Higher Ag:GMP stoichiometries result in almost instantaneous gelation with non-orthogonal assembly of the gelators, while at lower molar ratios, orthogonal assembly is observed. Significantly, by increasing the pH as an external stimulus, nanofilaments comprising FY can be selectively disassembled from the hybrid hydrogels. Our results demonstrate a simple approach for the construction of multicomponent stimuli-responsive supramolecular hydrogels with adaptable network and mechanical properties.

18.
Nat Chem ; 13(9): 868-879, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34168327

RESUMO

Artificial cell-like communities participate in diverse modes of chemical interaction but exhibit minimal interfacing with their local environment. Here we develop an interactive microsystem based on the immobilization of a population of enzyme-active semipermeable proteinosomes within a helical hydrogel filament to implement signal-induced movement. We attach large single-polynucleotide/peptide microcapsules at one or both ends of the helical protocell filament to produce free-standing soft microactuators that sense and process chemical signals to perform mechanical work. Different modes of translocation are achieved by synergistic or antagonistic enzyme reactions located within the helical connector or inside the attached microcapsule loads. Mounting the microactuators on a ratchet-like surface produces a directional push-pull movement. Our methodology opens up a route to protocell-based chemical systems capable of utilizing mechanical work and provides a step towards the engineering of soft microscale objects with increased levels of operational autonomy.


Assuntos
Células Artificiais/química , Hidrogéis/química , Proteínas Imobilizadas/química , Resinas Acrílicas/química , Alginatos/química , Animais , Cloreto de Cálcio/química , Bovinos , Desenho de Equipamento , Glucose Oxidase/química , Microfluídica , Movimento , Soroalbumina Bovina/química , Urease/química
19.
Nat Commun ; 11(1): 41, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900396

RESUMO

The development of programmable microscale materials with cell-like functions, dynamics and collective behaviour is an important milestone in systems chemistry, soft matter bioengineering and synthetic protobiology. Here, polymer/nucleotide coacervate micro-droplets are reconfigured into membrane-bounded polyoxometalate coacervate vesicles (PCVs) in the presence of a bio-inspired Ru-based polyoxometalate catalyst to produce synzyme protocells (Ru4PCVs) with catalase-like activity. We exploit the synthetic protocells for the implementation of multi-compartmentalized cell-like models capable of collective synzyme-mediated buoyancy, parallel catalytic processing in individual horseradish peroxidase-containing Ru4PCVs, and chemical signalling in distributed or encapsulated multi-catalytic protocell communities. Our results highlight a new type of catalytic micro-compartment with multi-functional activity and provide a step towards the development of protocell reaction networks.


Assuntos
Células Artificiais/química , Catalase/química , Rutênio/química , Compostos de Tungstênio/química , Catalase/síntese química , Catálise , Peroxidase do Rábano Silvestre/química
20.
Angew Chem Int Ed Engl ; 48(27): 4982-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19492376

RESUMO

New uses for ALD: By applying standard metal oxide atomic layer deposition (ALD) to two types of porphyrins, site-specific chemical infiltration of substrate molecules is achieved: Diethylzinc can diffuse into the interior of porphyrin supramolecular structures and induce metalation of the porphyrin molecules from the vapor phase. A = Ph, p-HO(3)SC(6)H(4).


Assuntos
Metais/química , Porfirinas/química , Modelos Químicos , Nanoestruturas , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA