Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 265: 115504, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742581

RESUMO

Recycling organic wastes on agricultural soils improves the soil quality, but the environmental and health impact of these organic amendments closely depends on their origins, their bio-physicochemical characteristics and the considered organisms potentially affected. The aim of this study was to assess the potential chronic ecotoxicity of spreading organic amendments on agricultural soils. To do this, we characterized three different organic amendments: sewage sludge from an urban wastewater treatment plant, cow manure and liquid dairy manure. Their chronic ecotoxicity was studied through assays exposing earthworms of the species Eisenia fetida and two plants: Medicago sativa and Sinapis alba. Of the three amendments, the sewage sludge presented the highest concentrations of micropollutants and a considerable fraction of available and biodegradable organic matter. The cow manure and liquid dairy manure had lower chemical contamination and similar characteristics with lower biodegradable fractions of their organic matter. No chronic phytotoxicity was evidenced: on the contrary, particularly with sewage sludge, the germination rate and aerial and root biomass of the two plants increased. Considering earthworms, their biomass increased considerably during the reproduction assays in soil amended with sewage sludge, which contained the more bioavailable organic matter. Nonetheless, the earthworms presented an inhibition close to 78% of the production of juveniles when exposed to sewage sludge exceeding 20 g.kg-1 DW (that means 2 times the agronomic dose). This reprotoxic effect was also observed in the presence of liquid dairy manure, but not with cow manure. At the end of the assays, the glycogen and protein reserves in earthworms exposed to sewage sludge were inferior to that of control earthworms, respectively around 50% and 30%. For the earthworms exposed to liquid dairy manure, protein and lipid reserves increased. In the case of liquid dairy manure, this reprotoxic effect did not appear to be linked to the presence of micropollutants. In conclusion, our results confirm the need to use several ecotoxicity assays at different biological levels and with different biological models to assess the ecotoxic impacts of soil amendments. Indeed, although certain organic wastes present a strong nutritional potential for both plants and earthworms, a not inconsiderable risk was apparent for the reproduction of the latter. An integrated ecotoxicity criterion that takes into account a weighted sum of the different results would guide the utilization of organic amendments while ensuring the good health of agricultural ecosystems.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Bovinos , Feminino , Solo/química , Oligoquetos/metabolismo , Esgotos/química , Esterco , Ecossistema , Poluentes do Solo/análise
2.
Crit Rev Environ Sci Technol ; 45(12): 1277-1377, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25866458

RESUMO

A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pKa), water dissolution or hydrophobic behavior (especially through the KOW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (EHOMO) and the energy of the lowest unoccupied molecular orbital (ELUMO), polarizability (α) and dipole moment (µ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment.

3.
Waste Manag ; 181: 1-10, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564968

RESUMO

The growing use of anaerobic co-digestion (AcoD) in processing organic waste has led to a significant digestate production. To effectively recycle digestate back into soils, it is crucial to understand how operational variables in the AcoD process influence the conversion of organic matter (OM). To address this, a combination of biochemical fractionation and various soil incubation tests were employed to assess the stability of OM in digestates generated from anaerobic continuous reactors fed with a food waste-hay mixture and operating at different hydraulic retention times (HRT) and organic loading rates (OLR). This study revealed that digester performance and operating parameters impacted carbon dynamics in soils. A decrease in the carbon mineralization in soils when increasing the HRT was reported (48 ± 4 % for 70 days compared to 59 ± 1 % for 42 days). Specific HRT and OLR values were found to be linked to carbon accessibility and complexity, confirming that longer HRT lead to higher OM removal and increased complexity in soluble OM, despite minor discrepancies in relative carbon distribution. Furthermore, comparable rates of nitrogen mineralization in soils were observed for all digestates, consistent with the accessibility of nitrogen from the particulate OM. Nevertheless, AcoD converted substrates with the potential to immobilize nitrogen in soils into fast-acting fertilizers. In summary, this study underscores the importance of controlling the AcoD performances to evaluate the suitability of digestates for sustainable agricultural practices.


Assuntos
Carbono , Nitrogênio , Solo , Anaerobiose , Solo/química , Carbono/química , Nitrogênio/metabolismo , Reatores Biológicos , Eliminação de Resíduos/métodos
4.
Sci Total Environ ; 931: 172977, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703836

RESUMO

The reuse of treated wastewater (TWW) for irrigation appears to be a relevant solution to the challenges of growing water demand and scarcity. However, TWW contains not only micro-pollutants including pharmaceutical residues but also antibiotic resistant bacteria. The reuse of TWW could contribute to the dissemination of antimicrobial resistance in the environment. The purpose of this study was to assess if exogenous bacteria from irrigation waters (TWW or tap water-TP) affect endogenous soil microbial communities (from 2 soils with distinct irrigation history) and key antibiotic resistance gene sul1 and mobile genetic elements intl1 and IS613. Experiments were conducted in microcosms, irrigated in one-shot, and monitored for three months. Results showed that TP or TWW exposure induced a dynamic response of soil microbial communities but with no significant increase of resistance and mobile gene abundances. However, no significant differences were observed between the two water types in the current experimental design. Despite this, the 16S rDNA analysis of the two soils irrigated for two years either with tap water or TWW resulted in soil microbial community differentiation and the identification of biomarkers from Xanthomonadaceae and Planctomycetes families for soils irrigated with TWW. Low-diversity soils were more sensitive to the addition of TWW. Indeed, TWW exposure stimulated the growth of bacterial genera known to be pathogenic, correlating with a sharp increase in the copy number of selected resistance genes (up to 3 logs). These low-diversity soils could thus enable the establishment of exogenous bacteria from TWW which was not observed with native soils. In particular, the emergence of Planctomyces, previously suggested as a biomarker of soil irrigated by TWW, was here demonstrated. Finally, this study showed that water input frequency, initial soil microbial diversity and soil history drive changes within soil endogenous communities and the antibiotic resistance gene pool.


Assuntos
Irrigação Agrícola , Microbiologia do Solo , Águas Residuárias , Águas Residuárias/microbiologia , Irrigação Agrícola/métodos , Resistência Microbiana a Medicamentos/genética , Eliminação de Resíduos Líquidos/métodos , Bactérias , Solo/química , Microbiota/efeitos dos fármacos , Farmacorresistência Bacteriana/genética
5.
Water Sci Technol ; 68(2): 448-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23863441

RESUMO

Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters today, and that it is important to start considering classes of MPs based on their chemical structure or ecotoxicological effect, rather than the individual molecules. This paper identifies potential future research areas that comprise (i) considering transformation products in MP removal analysis, (ii) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters.


Assuntos
Modelos Teóricos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Adsorção , Fotólise , Volatilização , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
6.
Sci Total Environ ; 877: 162882, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934942

RESUMO

The recalcitrant structures either from substrate or microbial biomass contained in digestates after anaerobic digestion (AD) highly influence digestate valorization. To properly assess the microbial biomass contribution to the digested organic matter (OM), a combination of characterization methods and the use of various substrate types in anaerobic continuous reactors was required. The use of totally biodegradable substrates allowed detecting soluble microbial products via fluorescence spectroscopy at emission wavelengths of 420 and 460 nm while the protein-like signature was enhanced by the whey protein. During reactors' operation, a transfer of complex compounds to the dissolved OM from the particulate OM was observed through fluorescence applied on biochemical fractionation. Consequently, the fluorescence complexity index of the dissolved OM increased from 0.59-0.60 to 1.06-1.07, whereas it decreased inversely for the extractable soluble from the particulate OM from 1.16-1.19 to 0.42-0.54. Accordingly, fluorescence regional integration showed differences among reactors based on visual inspection and orthogonal partial latent structures (OPLS) analysis. Similarly, the impact of the substrate type and operation time on the particulate OM was revealed by 13C nuclear magnetic resonance using OPLS, providing a good model (R2X = 0.93 and Q2 = 0.8) with a clear time-trend. A high signal resonated at ∼30 ppm attributed to CH2-groups in the aliphatic chain of lipid-like structure besides carbohydrates intensities at 60-110 ppm distinguished the reactor fed with whey protein from the other, which was mostly biomass related. Indeed, this latter displayed a higher presence of peptidoglycan (δH/C: 1.6-2.0/20-25 ppm) derived from microbial biomass by 1H-13C heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance. Interestingly, the sample distribution obtained by non-metric multidimensional scaling of bacterial communities resembled the attained using 13C NMR properties, opening new research perspectives. Overall, this study discloses the microbial biomass contribution to digestates composition to improve the OM transformation mechanism knowledge.


Assuntos
Material Particulado , Biomassa , Anaerobiose , Proteínas do Soro do Leite , Espectroscopia de Ressonância Magnética
7.
Artigo em Inglês | MEDLINE | ID: mdl-36767518

RESUMO

Recycling organic wastes into farmland faces a double challenge: increasing the carbon storage of soil while mitigating CO2 emission from soil. Predicting the stability of organic matter (OM) in wastes and treatment products can be helpful in dealing with this contradiction. This work proposed a modeling approach integrating an OM characterization protocol into partial least squares (PLS) regression. A total of 31 organic wastes, and their products issued from anaerobic digestion, composting, and digestion-composting treatment were characterized using sequential extraction and three-dimension (3D) fluorescence spectroscopy. The apportionment of carbon in different fractions and fluorescence spectra revealed that the OM became less accessible and biodegradable after treatments, especially the composting. This was proven by the decrease in CO2 emission from soil incubation. The PLS model successfully predicted the stability of solid digestate, compost, and compost of solid digestate in the soil by using only the characterized variables of non-treated wastes. The results suggested that it would be possible to predict the stability of OM from organic wastes after different treatment procedures. It is helpful to choose the most suitable and economic treatment procedure to stabilize labile organic carbon in wastes and hence minimize CO2 emission after the application of treatment products to the soil.


Assuntos
Dióxido de Carbono , Compostagem , Solo/química , Carbono , Resíduos Sólidos
8.
Chemosphere ; 298: 134293, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307387

RESUMO

Solar drying and liming are commonly used for sludge treatment, but little is known about their efficiency on antibiotics and Polycyclic Aromatic Hydrocarbons (PAHs) removal. This study aimed to investigate the removal of antibiotics and PAHs during solar drying of Limed Sludge (LS) and Non-Limed Sludge (NLS). Thus, organic matter fractionation and 3D fluorescence were used to assess the accessibility and the complexity of organic matter. 2 experiments have been conducted using LS and NLS for 45 days of drying in a pilot scale tunnel. Physicochemical results indicated significant decrease of water content (90%) for both sludge samples within 15 days of drying. For both treatments, the removal of total organic carbon and total nitrogen was low and similar for both treatments. Through this study, it has been confirmed that liming and drying contributed to a strong modification of the organic matter quality with an increase of its accessibility. On the other hand, drying alone increased the less accessible compartments, while the presence of lime affected the interconnexion between the organic matter pools. 3D fluorescence confirmed the obtained results and indicated that LS leads to obtaining more simple molecules in the most accessible compartments, while NLS leads to obtaining more complex molecules in the less accessible compartments. In addition, solar radiations and leaching may contribute to the significant removal (p < 0.01) of roxithromycin, benzo(a)anthracene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and benzo(g, h, i) perylene in the presence of lime. Furthermore, the evolution of organic matter pools in terms of accessibility and complexity may drive the bioavailability of these pollutants, leading to their significant removal.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Esgotos , Antibacterianos , Benzo(a)pireno , Fracionamento Químico , Hidrocarbonetos Policíclicos Aromáticos/química , Esgotos/química
9.
Appl Environ Microbiol ; 77(24): 8487-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22003005

RESUMO

Efficient dissociation of microorganisms from their aggregate matrix is required to study the microorganisms without interaction with their native environment (e.g., biofilms, flocs, granules, etc.) and to assess their community composition through the application of molecular or microscopy techniques. To this end, we combined enzymatic treatments and a cell extraction by density gradient to efficiently recover anaerobic microorganisms from urban wastewater treatment plant sludge. The enzymes employed (amylase, cellulase, DNase, and pectinase) as a pretreatment softly disintegrated the extrapolymeric substances (EPS) interlocked with the microorganisms. The potential damaging effects of the applied procedure on bacterial and archaeal communities were assessed by studying the variations in density (using quantitative PCR), diversity (using capillary electrophoresis single-strand conformation polymorphism fingerprinting [CE-SSCP]), and activity (using a standard anaerobic activity test) of the extracted microorganisms. The protocol preserved the general capacity of the microbial community to produce methane under anaerobic conditions and its diversity; particularly the archaeal community was not affected in terms of either density or structure. This cell extraction procedure from the matrix materials offers interesting perspectives for metabolic, microscopic, and molecular assays of microbial communities present in complex matrices constituted by bioaggregates or biofilms.


Assuntos
Archaea/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Enzimas/metabolismo , Técnicas Microbiológicas/métodos , Esgotos/microbiologia , Biodiversidade , Sobrevivência Celular , Contagem de Colônia Microbiana , Impressões Digitais de DNA , Microbiologia Ambiental , Viabilidade Microbiana
10.
J Environ Monit ; 13(10): 2770-4, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21860870

RESUMO

The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Esgotos/química , Poluentes Químicos da Água/química , Adsorção , Biodegradação Ambiental , Sedimentos Geológicos/química , Cinética , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
11.
Water Res ; 188: 116524, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099267

RESUMO

Micropollutants emitted by Human activities represent a potential threat to our health and aquatic environment. Thousands of active substances are used and go to WWTP through wastewaters. During water treatment, incomplete elimination occurs. Effluents released to the environment still contain part of the micropollutants present in the influents. Here, we studied the potential impacts on Human health and aquatic environment of the release of 261 organic micropollutants and 25 inorganic micropollutants at the scale of France. Data were gathered from national surveys, reports, papers and PhD works. The USEtox ® model was used to assess potential impacts. The impacts on Human health were estimated for 94 organic and 15 inorganic micropollutants and on aquatic environment for 88 organic and 19 inorganic micropollutants highlighting lack of concentration and toxicological data in literature. Some Polycyclic Aromatic Hydrocarbons and pesticides as well as As and Zn showed highest potential impacts on Human health. Some pesticides, PCB 101, ßE2, Al, Fe and Cu showed highest potential impacts on aquatic environment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , França , Humanos , Plantas , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Pesos e Medidas
12.
Waste Manag ; 136: 132-142, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34666295

RESUMO

Further characterization to properly assess the fate of organic matter quality during anaerobic digestion and organic carbon mineralization in soils is required. Organic matter quality based on its accessibility and complexity was employed to successfully classify 28 substrate/digestate pairs through principal components and hierarchical clustering analysis. The two first components explained 58.02% of the variability and four main groups were separated according to the feedstock type. A decrease in the accessibility (16-66%) and an increase in the complexity (34-98%) of the most accessible fractions was noticed. Besides, an increase of non-biodegradable compounds (17-66%) was globally observed after anaerobic digestion. The observed trends in the conversion of organic matter during anaerobic digestion have allowed to fill the gap in the modeling of the anaerobic digestion process chain. Indeed, partial least squares regressions have accurately predicted the organic matter quality of digestates from their inputs (R2 = 0.831, Q2 = 0.593) although the digester operational conditions (temperature and hydraulic retention time) were non-explicative enough. As a novel approach, the predicted digestate quality was used to feed a partial least squares regression model previously developed to predict organic carbon mineralization in soil. The combined models have predicted experimental organic carbon mineralization in soil (R2 = 0.697) with a model quality similar to the model for organic carbon mineralization in soil (R2 = 0.894). This is the first study that has successfully conceived an additional step in the prediction of organic matter fate from raw substrate before anaerobic digestion to soil carbon mineralization.


Assuntos
Agricultura , Solo , Anaerobiose , Carbono
13.
Front Microbiol ; 12: 667043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054773

RESUMO

Even though organic waste (OW) recycling via anaerobic digestion (AD) and composting are increasingly used, little is known about the impact of OW origin (fecal matters and food and vegetable wastes) on the end products' bacterial contents. The hypothesis of a predictable bacterial community structure in the end products according to the OW origin was tested. Nine OW treatment plants were selected to assess the genetic structure of bacterial communities found in raw OW according to their content in agricultural and urban wastes and to estimate their modifications through AD and composting. Two main bacterial community structures among raw OWs were observed and matched a differentiation according to the occurrences of urban chemical pollutants. Composting led to similar 16S rRNA gene OTU profiles whatever the OW origin. With a significant shift of about 140 genera (representing 50% of the bacteria), composting was confirmed to largely shape bacterial communities toward similar structures. The enriched taxa were found to be involved in detoxification and bioremediation activities. This process was found to be highly selective and favorable for bacterial specialists. Digestates showed that OTU profiles differentiated into two groups according to their relative content in agricultural (manure) and urban wastes (mainly activated sludge). About one third of the bacterial taxa was significantly affected by AD. In digestates of urban OW, this sorting led to an enrichment of 32 out of the 50 impacted genera, while for those produced from agricultural or mixed urban/agricultural OW (called central OW), a decay of 54 genera over 60 was observed. Bacteria from activated sludge appeared more fit for AD than those of other origins. Functional inferences showed AD enriched genera from all origins to share similar functional traits, e.g., chemoheterotrophy and fermentation, while being often taxonomically distinct. The main functional traits among the dominant genera in activated sludge supported a role in AD. Raw OW content in activated sludge was found to be a critical factor for predicting digestate bacterial contents. Composting generated highly predictable and specialized community patterns whatever the OW origin. AD and composting bacterial changes were driven by functional traits selected by physicochemical factors such as temperature and chemical pollutants.

14.
J Hazard Mater ; 415: 125613, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088172

RESUMO

Following treatment, amounts of pesticides can reach the atmosphere because of spray drift, volatilization from soil or plants, and/or wind erosion. Monitoring and risk assessment of air contamination by pesticides is a recent issue and more insights on pesticide transfer to atmosphere are needed. Thus, the objective of this work was to better understand and assess pesticides emission potential to air through volatilization. The TyPol tool was used to explore the relationships between the global, soil and plant volatilization potentials of 178 pesticides, and their molecular properties. The outputs of TyPol were then compared to atmospheric pesticide concentrations monitored in various French regions. TyPol was able to discriminate pesticides that were observed in air from those that were not. Clustering considering parameters driving the emission potential from soil (sorption characteristics) or plant (lipophilic properties), in addition to vapor pressure, allowed better discrimination of the pesticides than clustering considering all parameters for the global emission potential. Pesticides with high volatilization potential have high total energy, and low molecular weight, molecular connectivity indices and polarizability. TyPol helped better understand the volatilization potential of pesticides. It can be used as a first step to assess the risk of air contamination by pesticides.

15.
Appl Microbiol Biotechnol ; 85(3): 691-701, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19685239

RESUMO

The biodegradation of estradiol (E2), estrone (E1), and ethinylestradiol (EE2) was investigated using mixed bacterial cultures enriched from activated sludge. Enrichments were carried out on E2 or EE2 in batch conditions with acetonitrile as additional carbon source. Degradation experiments were performed both using hormones as sole carbon source or with an additional source. The hormones were completely degraded by these cultures. Estradiol was rapidly converted to E1 within 24 h. Thereafter, E1 degradation began, displaying a lag phase ranging from 3 to 4 days. Estrone depletion took from 48 h to more than 6 days, depending on the culture conditions. For EE2 degradation, when it was the sole carbon source, the lag phase and the time required for its complete removal (7 and 15 days, respectively) were shorter that in cultures with a supplementary carbon source. The specific degradation rates observed for E2 both with and without an additional carbon source were similar. By contrast, the specific degradation rates for E1 and EE2 were, respectively, seven and 20 times faster when these hormones were supplied as the sole carbon source. The bacterial community structure of each culture was characterized by molecular and cultural methods. The mixed cultures were made up of species belonging to Alcaligenes faecalis, Pusillimonas sp., Denitrobacter sp., and Brevundimonas diminuta or related to uncultured Bacteroidetes. The isolated strain B. diminuta achieved the conversion of E2 to E1.


Assuntos
Bactérias/metabolismo , Estrogênios/metabolismo , Esgotos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Cinética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Waste Manag ; 117: 18-31, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805598

RESUMO

In recent years, anaerobic digestion of organic waste (OW) is rapidly appearing as a winning waste management strategy by producing energy and anaerobic digestates that can be used as fertilizers in agricultural soils. In this context, the management of the OW treatment process to maximize agro-system sustainability satisfying the crop nutrient demands represents the main goal. To investigate these traits, two protocols to assess the plant availability of digestate nitrogen (N) and phosphorus (P) were evaluated. With this aim, the N and P availability was determined on 8 digestates and 2 types of digestate-based compost from different OW via sequential chemical extractions (SCE). In addition, the digestates were tested in soil incubations and in plant pot tests with Italian ryegrass and compared with chemical fertilizer and a non-amended control soil. The N extracted from digestates via SCE was related to soil N mineralization and plant N recovery. The C: N ratio had negative impact on mineralized N and its recovery in shoots (ShootsN = -0.0085.(C/N)+0.172, r2 = 0.67), whereas water extractable mineral N was positevely related to the root N apparent recovery fraction (N-ARF) with (RootsN = 5E-5.Nsolublemin+0.0138, r2 = 0.53). The shoot P-ARF was positively correlated with the inorganic water extractable fraction of P (ShootsP =0.1153.H2O-Pi-0.2777.H2O-Po+0.0249, r2 = 0.71) whereas the root P-ARF was positively correlated with the less accessible fractions (RootsP = (b)   0.0955.NaHCO3-Po+0.0955.NaOH-Po-0.0584NaHCO3-Pi+0.0128, r2 = 0.8641). Feedstock digestate typology impacted the N and P recovery results leading to a better description of the typology properties and a first nutrients ARF prediction.


Assuntos
Biocombustíveis , Fertilizantes/análise , Agricultura , Anaerobiose , Nutrientes , Solo
17.
Waste Manag ; 101: 150-160, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610476

RESUMO

Hydrolysis is considered the limiting step during solid waste anaerobic digestion (including co-digestion of sludge and biosolids). Mechanisms of hydrolysis are mechanistically not well understood with detrimental impact on model predictive capability. The common approach to multiple substrates is to consider simultaneous degradation of the substrates. This may not have the capacity to separate the different kinetics. Sequential degradation of substrates is theoretically supported by microbial capacity and the composite nature of substrates (bioaccessibility concept). However, this has not been experimentally assessed. Sequential chemical fractionation has been successfully used to define inputs for an anaerobic digestion model. In this paper, sequential extractions of organic substrates were evaluated in order to compare both models. By removing each fraction (from the most accessible to the least accessible fraction) from three different substrates, anaerobic incubation tests showed that for physically structured substrates, such as activated sludge and wheat straw, sequential approach could better describe experimental results, while this was less important for homogeneous materials such as pulped fruit. Following this, anaerobic incubation tests were performed on five substrates. Cumulative methane production was modelled by the simultaneous and sequential approaches. Results showed that the sequential model could fit the experimental data for all the substrates whereas simultaneous model did not work for some substrates.


Assuntos
Modelos Teóricos , Esgotos , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos , Hidrólise , Metano
18.
J Hazard Mater ; 162(2-3): 1145-50, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18649997

RESUMO

PAH are particularly monitored because of their carcinogenic properties and their ubiquity in the environment. Their presence in municipal sewage sludge is a major problem due to the environmental risks associated with the sludge spreading on agricultural soils. The objective of this work was to asses the removal of PAH naturally present in sludge by continuous anaerobic digestion with recirculation of ozonated sludge. Recirculation of ozonated digested sludge allowed to enhance PAH removals, the highest efficiency was obtained with the highest ozone dose (0.11gO(3)/g(TS)). In order to study the effect of recirculation, a reactor was operated without recirculation but was fed with a mixture of raw and ozonated digested sludge. This process led to the best performances in terms of PAH and solid removals. This pointed out some accumulation of nonbiodegradable or recalcitrant compounds during recirculation assay. Smallest and most soluble compounds presented the highest biodegradation efficiencies.


Assuntos
Anaerobiose , Compostos Policíclicos/isolamento & purificação , Esgotos/microbiologia , Ozônio/química , Compostos Policíclicos/química , Medição de Risco
19.
Environ Sci Pollut Res Int ; 26(6): 5820-5830, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30613878

RESUMO

The simultaneous fate of organic matter and 4 endocrine disruptors (3 polycyclic aromatic hydrocarbons (PAHs) (fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene) and nonylphenols (NP)) was studied during the anaerobic digestion followed by composting of sludge at lab-scale. Sludge organic matter was characterized, thanks to chemical fractionation and 3D fluorescence deciphering its accessibility and biodegradability. Total chemical oxygen demand (COD) removal was 41% and 56% during anaerobic digestion and composting, respectively. 3D fluorescence highlighted the quality changes of organic matter. During continuous anaerobic digestion, organic micropollutants' removal was 22 ± 14%, 6 ± 5%, 18 ± 9%, and 0% for fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols, respectively. Discontinuous composting allowed to go further on the organic micropollutants' removal as 34 ± 8%, 31 ± 20%, 38 ± 10%, and 52 ± 6% of fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols were dissipated, respectively. Moreover, the accessibility of PAH and NP expressed by their presence in the various sludge organic matter fractions and its evolution during both treatments was linked to both the quality evolution of the organic matter and the physicochemical properties of the PAH and NP; the presence in most accessible fractions explained the amount of PAH and NP dissipated.


Assuntos
Biodegradação Ambiental , Compostagem , Hidrocarbonetos Policíclicos Aromáticos/análise , Esgotos/química , Poluentes Químicos da Água/análise , Benzo(a)pireno , Análise da Demanda Biológica de Oxigênio , Fracionamento Químico , Fluorenos , Eliminação de Resíduos Líquidos
20.
FEMS Microbiol Ecol ; 66(2): 472-83, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18754780

RESUMO

Although anaerobic biodegradation of di-n-butyl phthalic acid ester (DBP) has been studied over the past decade, only little is known about the microorganisms involved in the biological anaerobic degradation pathways. The aim of this work is to characterize the microbial community dynamics in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica, a microorganism described previously as an anaerobic benzaldehyde degrader. Within the archaeal community, there was a shift between two different species of the genus Methanosaeta sp., indicating a highly specific impact of DBP or degradation products on archaeal species. RNA-directed probes were designed from SSCP sequences, and FISH observations confirmed the dominance of S. saccharolytica, and indicated floccular microstructures, likely providing favourable conditions for DBP degradation.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Reatores Biológicos , Dibutilftalato/metabolismo , Methanosarcinales/crescimento & desenvolvimento , Methanosarcinales/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Meios de Cultura , DNA Arqueal/análise , DNA Bacteriano/análise , Metano/metabolismo , Methanosarcinales/classificação , Methanosarcinales/genética , Dados de Sequência Molecular , Polimorfismo Conformacional de Fita Simples , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA