RESUMO
Aging is associated with increased cardiomyocyte loss, left-ventricular hypertrophy, and the accumulation of extracellular matrix, which results in declining cardiac function. The role of the matrix crosslinking enzyme, tissue transglutaminase (TG2), in age-related myocardial stiffness, and contractile function remains incompletely understood. In this study, we examined the role of TG2 in cardiac function, and determined whether TG2 inhibition can prevent age-associated changes in cardiac function. Male Fisher rats (18-month-old) were administered the transglutaminase inhibitor cystamine (study group) or saline (age-matched controls) for 12 weeks via osmotic mini-pumps. Cardiac function was determined by echocardiography and invasive pressure-volume loops. Rat hearts were dissected out, and TG2 expression, activity, and S-nitrosation were determined. Young (6-month-old) males were used as controls. TG2 activity significantly increased in the saline-treated but not in the cystamine-treated aging rat hearts. TG2 expression also increased with age and was unaltered by cystamine treatment. Aged rats showed increased left ventricular (LV) end-systolic dimension and a decrease in fractional shortening compared with young, which was not affected by cystamine. However, cystamine treatment preserved the preload-independent index of LV filling pressure and restored end-diastolic pressure, end-diastolic pressure-volume relationships, and arterial elastance toward young. An increase in TG2 activity contributes to age-associated increase in diastolic stiffness, thereby contributing to age-associated diastolic dysfunction. TG2 may thus represent a novel target for age-associated diastolic heart failure.