Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.400
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 639-665, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33646858

RESUMO

Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.


Assuntos
Helmintíase , Helmintos , Parasitos , Animais , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Linfócitos , Linfócitos T
2.
Cell ; 184(3): 810-826.e23, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406409

RESUMO

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.


Assuntos
Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Análise de Célula Única , Células Endoteliais/citologia , Sistema Nervoso Entérico/citologia , Feto/embriologia , Fibroblastos/citologia , Humanos , Imunidade , Enteropatias/congênito , Enteropatias/patologia , Mucosa Intestinal/crescimento & desenvolvimento , Intestinos/irrigação sanguínea , Ligantes , Mesoderma/citologia , Neovascularização Fisiológica , Pericitos/citologia , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204103

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
4.
Nat Immunol ; 21(1): 54-64, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819256

RESUMO

Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6∆PMN) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/ß release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis. Loss of Ripk1 accelerated disease onset, whereas combined deletion of caspase-8 and either Ripk3 or Mlkl strongly protected Ptpn6∆PMN mice. Ptpn6∆PMN neutrophils displayed increased p38 mitogen-activated protein kinase-dependent Ripk1-independent IL-1 and tumor necrosis factor production, and were prone to cell death. Together, these data emphasize dual functions for Ptpn6 in the negative regulation of p38 mitogen-activated protein kinase activation to control tumor necrosis factor and IL-1α/ß expression, and in maintaining Ripk1 function to prevent caspase-8- and Ripk3-Mlkl-dependent cell death and concomitant IL-1α/ß release.


Assuntos
Apoptose/imunologia , Caspase 8/imunologia , Neutrófilos/imunologia , Proteínas Quinases/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Caspase 8/genética , Células Cultivadas , Deleção de Genes , Inflamação/imunologia , Interleucina-1/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores Tipo I de Interleucina-1/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Genes Dev ; 38(3-4): 115-130, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383062

RESUMO

H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.


Assuntos
Heterocromatina , Histonas , Células Germinativas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Meiose/genética , Metilação , Masculino
6.
Cell ; 166(5): 1215-1230.e20, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27523608

RESUMO

Methionine-1 (M1)-linked ubiquitin chains regulate the activity of NF-κB, immune homeostasis, and responses to infection. The importance of negative regulators of M1-linked chains in vivo remains poorly understood. Here, we show that the M1-specific deubiquitinase OTULIN is essential for preventing TNF-associated systemic inflammation in humans and mice. A homozygous hypomorphic mutation in human OTULIN causes a potentially fatal autoinflammatory condition termed OTULIN-related autoinflammatory syndrome (ORAS). Four independent OTULIN mouse models reveal that OTULIN deficiency in immune cells results in cell-type-specific effects, ranging from over-production of inflammatory cytokines and autoimmunity due to accumulation of M1-linked polyubiquitin and spontaneous NF-κB activation in myeloid cells to downregulation of M1-polyubiquitin signaling by degradation of LUBAC in B and T cells. Remarkably, treatment with anti-TNF neutralizing antibodies ameliorates inflammation in ORAS patients and rescues mouse phenotypes. Hence, OTULIN is critical for restraining life-threatening spontaneous inflammation and maintaining immune homeostasis.


Assuntos
Doenças Autoimunes/genética , Autoimunidade/genética , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Inflamação/genética , Animais , Anticorpos Neutralizantes/uso terapêutico , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Linfócitos B/imunologia , Citocinas/metabolismo , Enzimas Desubiquitinantes/genética , Modelos Animais de Doenças , Endopeptidases/genética , Mutação em Linhagem Germinativa , Humanos , Inflamação/imunologia , Inflamação/terapia , Infliximab/uso terapêutico , Metionina/metabolismo , Camundongos , Camundongos Mutantes , Células Mieloides/imunologia , Poliubiquitina/metabolismo , Deleção de Sequência , Síndrome , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
7.
Nat Immunol ; 18(2): 196-204, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941787

RESUMO

Calcineurin is a phosphatase whose primary targets in T cells are NFAT transcription factors, and inhibition of calcineurin activity by treatment with cyclosporin A (CsA) or FK506 is a cornerstone of immunosuppressive therapies. Here we found that calcineurin was recruited to the T cell antigen receptor (TCR) signaling complex, where it reversed inhibitory phosphorylation of the tyrosine kinase Lck on Ser59 (LckS59). Loss of calcineurin activity impaired phosphorylation of Tyr493 of the tyrosine kinase ZAP-70 (ZAP-70Y493), as well as some downstream pathways in a manner consistent with signaling in cells expressing LckS59A (Lck that cannot be phosphorylated) or LckS59E (a phosphomimetic mutant). Notably, CsA inhibited integrin-LFA-1-dependent and NFAT-independent adhesion of T cells to the intercellular adhesion molecule ICAM-1, with little effect on cells expressing mutant Lck. These results provide new understanding of how widely used immunosuppressive drugs interfere with essential processes in the immune response.


Assuntos
Calcineurina/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Humanos , Imunossupressores/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Tacrolimo/farmacologia
8.
Immunity ; 53(5): 1050-1062.e5, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207210

RESUMO

Herpes simplex virus type 1 (HSV-1)-infected corneas can develop a blinding immunoinflammatory condition called herpes stromal keratitis (HSK), which involves the loss of corneal sensitivity due to retraction of sensory nerves and subsequent hyperinnervation with sympathetic nerves. Increased concentrations of the cytokine VEGF-A in the cornea are associated with HSK severity. Here, we examined the impact of VEGF-A on neurologic changes that underly HSK using a mouse model of HSV-1 corneal infection. Both CD4+ T cells and myeloid cells produced pathogenic levels of VEGF-A within HSV-1-infected corneas, and CD4+ cell depletion promoted reinnervation of HSK corneas with sensory nerves. In vitro, VEGF-A from infected corneas repressed sensory nerve growth and promoted sympathetic nerve growth. Neutralizing VEGF-A in vivo using bevacizumab inhibited sympathetic innervation, promoted sensory nerve regeneration, and alleviated disease. Thus, VEGF-A can shape the sensory and sympathetic nerve landscape within the cornea, with implications for the treatment of blinding corneal disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Córnea/inervação , Córnea/metabolismo , Ceratite Herpética/etiologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fibras Adrenérgicas , Animais , Córnea/imunologia , Córnea/virologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Herpesvirus Humano 1 , Humanos , Imunofenotipagem , Ceratite Herpética/metabolismo , Ceratite Herpética/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Depleção Linfocítica , Camundongos , Neurite (Inflamação) , Índice de Gravidade de Doença
9.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766810

RESUMO

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas Nucleares/genética , Fosfotransferases/genética , Splicing de RNA , RNA de Transferência/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/genética , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Linhagem , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Nature ; 617(7961): 513-518, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37076622

RESUMO

Multiprincipal-element alloys are an enabling class of materials owing to their impressive mechanical and oxidation-resistant properties, especially in extreme environments1,2. Here we develop a new oxide-dispersion-strengthened NiCoCr-based alloy using a model-driven alloy design approach and laser-based additive manufacturing. This oxide-dispersion-strengthened alloy, called GRX-810, uses laser powder bed fusion to disperse nanoscale Y2O3 particles throughout the microstructure without the use of resource-intensive processing steps such as mechanical or in situ alloying3,4. We show the successful incorporation and dispersion of nanoscale oxides throughout the GRX-810 build volume via high-resolution characterization of its microstructure. The mechanical results of GRX-810 show a twofold improvement in strength, over 1,000-fold better creep performance and twofold improvement in oxidation resistance compared with the traditional polycrystalline wrought Ni-based alloys used extensively in additive manufacturing at 1,093 °C5,6. The success of this alloy highlights how model-driven alloy designs can provide superior compositions using far fewer resources compared with the 'trial-and-error' methods of the past. These results showcase how future alloy development that leverages dispersion strengthening combined with additive manufacturing processing can accelerate the discovery of revolutionary materials.

11.
Nature ; 616(7955): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991119

RESUMO

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Assuntos
Doença da Artéria Coronariana , Multiômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , Fenótipo , Proteômica/métodos , Aprendizado de Máquina , Negro ou Afro-Americano/genética , Asiático/genética , População Europeia/genética , Reino Unido , Conjuntos de Dados como Assunto , Internet , Reprodutibilidade dos Testes , Estudos de Coortes , Proteoma/análise , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Dados Factuais
12.
Mol Cell ; 81(6): 1128-1129, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33740472

RESUMO

Huang et al. (2021) identified a mechanism acting through the arginine methyltransferase PRMT6 that stabilizes the interaction of RCC1 with chromatin, promoting cell proliferation and tumorigenicity. Targeting this mechanism might enhance the treatment of tumors such as glioblastoma.


Assuntos
Glioblastoma , Proteínas Nucleares , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Cromossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Metilação , Mitose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Células-Tronco/metabolismo
13.
Nat Immunol ; 17(11): 1273-1281, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27595232

RESUMO

Siglec-9 is a sialic-acid-binding lectin expressed predominantly on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers and results in increased sialylation. Thus, when the mucin MUC1 is expressed on cancer cells, it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we found that this cancer-specific MUC1 glycoform, through engagement of Siglec-9, 'educated' myeloid cells to release factors associated with determination of the tumor microenvironment and disease progression. Moreover, MUC1-ST induced macrophages to display a tumor-associated macrophage (TAM)-like phenotype, with increased expression of the checkpoint ligand PD-L1. Binding of MUC1-ST to Siglec-9 did not activate the phosphatases SHP-1 or SHP-2 but, unexpectedly, induced calcium flux that led to activation of the kinases MEK-ERK. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway that follows engagement of Siglec-9.


Assuntos
Antígenos CD/metabolismo , Mucina-1/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral/imunologia , Antígenos CD/genética , Biomarcadores , Diferenciação Celular , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Glicosilação , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Mieloides/citologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Ligação Proteica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética
14.
Nat Rev Genet ; 23(3): 154-168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34611352

RESUMO

Modern genome-scale methods that identify new genes, such as proteogenomics and ribosome profiling, have revealed, to the surprise of many, that overlap in genes, open reading frames and even coding sequences is widespread and functionally integrated into prokaryotic, eukaryotic and viral genomes. In parallel, the constraints that overlapping regions place on genome sequences and their evolution can be harnessed in bioengineering to build more robust synthetic strains and constructs. With a focus on overlapping protein-coding and RNA-coding genes, this Review examines their discovery, topology and biogenesis in the context of their genome biology. We highlight exciting new uses for sequence overlap to control translation, compress synthetic genetic constructs, and protect against mutation.


Assuntos
Bioengenharia , Homologia de Genes/fisiologia , Genoma/genética , Animais , Bioengenharia/métodos , Bioengenharia/tendências , Mapeamento Cromossômico , Humanos , Organismos Geneticamente Modificados/genética
15.
Cell ; 154(1): 169-84, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23827681

RESUMO

Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1' and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Neoplasias Ovarianas/enzimologia , Ubiquitinação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Endopeptidases/genética , Feminino , Humanos , Modelos Moleculares , Neoplasias Ovarianas/metabolismo , Estrutura Terciária de Proteína , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Ubiquitinas/metabolismo
16.
EMBO J ; 42(15): e113687, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377118

RESUMO

Mycobacteria, such as Mycobacterium tuberculosis, depend on the activity of adenosine triphosphate (ATP) synthase for growth. The diarylquinoline bedaquiline (BDQ), a mycobacterial ATP synthase inhibitor, is an important medication for treatment of drug-resistant tuberculosis but suffers from off-target effects and is susceptible to resistance mutations. Consequently, both new and improved mycobacterial ATP synthase inhibitors are needed. We used electron cryomicroscopy and biochemical assays to study the interaction of Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ-876 and the squaramide inhibitor SQ31f. The aryl groups of TBAJ-876 improve binding compared with BDQ, while SQ31f, which blocks ATP synthesis ~10 times more potently than ATP hydrolysis, binds a previously unknown site in the enzyme's proton-conducting channel. Remarkably, BDQ, TBAJ-876, and SQ31f all induce similar conformational changes in ATP synthase, suggesting that the resulting conformation is particularly suited for drug binding. Further, high concentrations of the diarylquinolines uncouple the transmembrane proton motive force while for SQ31f they do not, which may explain why high concentrations of diarylquinolines, but not SQ31f, have been reported to kill mycobacteria.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Diarilquinolinas/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Trifosfato de Adenosina/metabolismo , Mycobacterium tuberculosis/genética
17.
EMBO J ; 42(17): e113012, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37409490

RESUMO

Invasive bacteria enter the cytosol of host cells through initial uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the BCV membrane, thereby exposing to the cytosol intraluminal, otherwise shielded danger signals such as glycans and sphingomyelin. The detection of glycans by galectin-8 triggers anti-bacterial autophagy, but how cells sense and respond to cytosolically exposed sphingomyelin remains unknown. Here, we identify TECPR1 (tectonin beta-propeller repeat containing 1) as a receptor for cytosolically exposed sphingomyelin, which recruits ATG5 into an E3 ligase complex that mediates lipid conjugation of LC3 independently of ATG16L1. TECPR1 binds sphingomyelin through its N-terminal DysF domain (N'DysF), a feature not shared by other mammalian DysF domains. Solving the crystal structure of N'DysF, we identified key residues required for the interaction, including a solvent-exposed tryptophan (W154) essential for binding to sphingomyelin-positive membranes and the conjugation of LC3 to lipids. Specificity of the ATG5/ATG12-E3 ligase responsible for the conjugation of LC3 is therefore conferred by interchangeable receptor subunits, that is, the canonical ATG16L1 and the sphingomyelin-specific TECPR1, in an arrangement reminiscent of certain multi-subunit ubiquitin E3 ligases.


Assuntos
Proteínas Associadas aos Microtúbulos , Esfingomielinas , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Mamíferos
18.
N Engl J Med ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38767244

RESUMO

BACKGROUND: The subcutaneous implantable cardioverter-defibrillator (ICD) is associated with fewer lead-related complications than a transvenous ICD; however, the subcutaneous ICD cannot provide bradycardia and antitachycardia pacing. Whether a modular pacing-defibrillator system comprising a leadless pacemaker in wireless communication with a subcutaneous ICD to provide antitachycardia and bradycardia pacing is safe remains unknown. METHODS: We conducted a multinational, single-group study that enrolled patients at risk for sudden death from ventricular arrhythmias and followed them for 6 months after implantation of a modular pacemaker-defibrillator system. The safety end point was freedom from leadless pacemaker-related major complications, evaluated against a performance goal of 86%. The two primary performance end points were successful communication between the pacemaker and the ICD (performance goal, 88%) and a pacing threshold of up to 2.0 V at a 0.4-msec pulse width (performance goal, 80%). RESULTS: We enrolled 293 patients, 162 of whom were in the 6-month end-point cohort and 151 of whom completed the 6-month follow-up period. The mean age of the patients was 60 years, 16.7% were women, and the mean (±SD) left ventricular ejection fraction was 33.1±12.6%. The percentage of patients who were free from leadless pacemaker-related major complications was 97.5%, which exceeded the prespecified performance goal. Wireless-device communication was successful in 98.8% of communication tests, which exceeded the prespecified goal. Of 151 patients, 147 (97.4%) had pacing thresholds of 2.0 V or less, which exceeded the prespecified goal. The percentage of episodes of arrhythmia that were successfully terminated by antitachycardia pacing was 61.3%, and there were no episodes for which antitachycardia pacing was not delivered owing to communication failure. Of 162 patients, 8 died (4.9%); none of the deaths were deemed to be related to arrhythmias or the implantation procedure. CONCLUSIONS: The leadless pacemaker in wireless communication with a subcutaneous ICD exceeded performance goals for freedom from major complications related to the leadless pacemaker, for communication between the leadless pacemaker and subcutaneous ICD, and for the percentage of patients with a pacing threshold up to 2.0 V at a 0.4-msec pulse width at 6 months. (Funded by Boston Scientific; MODULAR ATP ClinicalTrials.gov NCT04798768.).

19.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954678

RESUMO

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/genética , Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
20.
Nature ; 595(7869): 718-723, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34082438

RESUMO

Resistance represents a major challenge for antibody-based therapy for COVID-191-4. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.


Assuntos
COVID-19/prevenção & controle , COVID-19/virologia , Imunoglobulina M/administração & dosagem , Imunoglobulina M/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Administração Intranasal , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , COVID-19/imunologia , Relação Dose-Resposta Imunológica , Feminino , Humanos , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/efeitos adversos , Imunoglobulina M/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA