Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 121(4): 1244-1265, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601693

RESUMO

Communication requires the abilities to generate and interpret utterances and to infer the beliefs, desires, and goals of others ("Theory of Mind"; ToM). These two abilities have been shown to dissociate: individuals with aphasia retain the ability to think about others' mental states; and individuals with autism are impaired in social reasoning, but their basic language processing is often intact. In line with this evidence from brain disorders, functional MRI (fMRI) studies have shown that linguistic and ToM abilities recruit distinct sets of brain regions. And yet, language is a social tool that allows us to share thoughts with one another. Thus, the language and ToM brain networks must share information despite being implemented in distinct neural circuits. Here, we investigated potential interactions between these networks during naturalistic cognition using functional correlations in fMRI. The networks were functionally defined in individual participants, in terms of preference for sentences over nonwords for language, and for belief inference over physical-event processing for ToM, with both a verbal and a nonverbal paradigm. Although, across experiments, interregion correlations within each network were higher than between-network correlations, we also observed above-baseline synchronization of blood oxygenation level-dependent signal fluctuations between the two networks during rest and story comprehension. This synchronization was functionally specific: neither network was synchronized with the executive control network (functionally defined in terms of preference for a harder over easier version of an executive task). Thus, coordination between the language and ToM networks appears to be an inherent and specific characteristic of their functional architecture. NEW & NOTEWORTHY Humans differ from nonhuman primates in their abilities to communicate linguistically and to infer others' mental states. Although linguistic and social abilities appear to be interlinked onto- and phylogenetically, they are dissociated in the adult human brain. Yet successful communication requires language and social reasoning to work in concert. Using functional MRI, we show that language regions are synchronized with social regions during rest and language comprehension, pointing to a possible mechanism for internetwork interaction.


Assuntos
Conectoma , Idioma , Teoria da Mente , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção da Fala
2.
J Neurosci ; 33(4): 1331-6a, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345209

RESUMO

Functional magnetic resonance imaging has revealed a set of regions selectively engaged in visual scene processing: the parahippocampal place area (PPA), the retrosplenial complex (RSC), and a region around the transverse occipital sulcus (previously known as "TOS"), here renamed the "occipital place area" (OPA). Are these regions not only preferentially activated by, but also causally involved in scene perception? Although past neuropsychological data imply a causal role in scene processing for PPA and RSC, no such evidence exists for OPA. Thus, to test the causal role of OPA in human adults, we delivered transcranial magnetic stimulation (TMS) to the right OPA (rOPA) or the nearby face-selective right occipital face area (rOFA) while participants performed fine-grained perceptual discrimination tasks on scenes or faces. TMS over rOPA impaired discrimination of scenes but not faces, while TMS over rOFA impaired discrimination of faces but not scenes. In a second experiment, we delivered TMS to rOPA, or the object-selective right lateral occipital complex (rLOC), while participants performed categorization tasks involving scenes and objects. TMS over rOPA impaired categorization accuracy of scenes but not objects, while TMS over rLOC impaired categorization accuracy of objects but not scenes. These findings provide the first evidence that OPA is causally involved in scene processing, and further show that this causal role is selective for scene perception. Our findings illuminate the functional architecture of the scene perception system, and also argue against the "distributed coding" view in which each category-selective region participates in the representation of all objects.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Estimulação Magnética Transcraniana , Adulto Jovem
3.
Neurobiol Lang (Camb) ; 3(3): 413-440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37216061

RESUMO

Language and social cognition, especially the ability to reason about mental states, known as theory of mind (ToM), are deeply related in development and everyday use. However, whether these cognitive faculties rely on distinct, overlapping, or the same mechanisms remains debated. Some evidence suggests that, by adulthood, language and ToM draw on largely distinct-though plausibly interacting-cortical networks. However, the broad topography of these networks is similar, and some have emphasized the importance of social content / communicative intent in the linguistic signal for eliciting responses in the language areas. Here, we combine the power of individual-subject functional localization with the naturalistic-cognition inter-subject correlation approach to illuminate the language-ToM relationship. Using functional magnetic resonance imaging (fMRI), we recorded neural activity as participants (n = 43) listened to stories and dialogues with mental state content (+linguistic, +ToM), viewed silent animations and live action films with mental state content but no language (-linguistic, +ToM), or listened to an expository text (+linguistic, -ToM). The ToM network robustly tracked stimuli rich in mental state information regardless of whether mental states were conveyed linguistically or non-linguistically, while tracking a +linguistic / -ToM stimulus only weakly. In contrast, the language network tracked linguistic stimuli more strongly than (a) non-linguistic stimuli, and than (b) the ToM network, and showed reliable tracking even for the linguistic condition devoid of mental state content. These findings suggest that in spite of their indisputably close links, language and ToM dissociate robustly in their neural substrates-and thus plausibly cognitive mechanisms-including during the processing of rich naturalistic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA