Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Pharmacol ; 939: 175470, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543287

RESUMO

Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.


Assuntos
Antineoplásicos , Ácidos Graxos , Humanos , Animais , Camundongos , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Ureia/farmacologia , Ureia/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Potencial da Membrana Mitocondrial
2.
Curr Med Chem ; 27(10): 1670-1689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30259807

RESUMO

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.


Assuntos
Descoberta de Drogas , Ácidos Graxos Ômega-3
3.
Chem Sci ; 11(47): 12677-12685, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34094462

RESUMO

Respiring mitochondria establish a proton gradient across the mitochondrial inner membrane (MIM) that is used to generate ATP. Protein-independent mitochondrial uncouplers collapse the proton gradient and disrupt ATP production by shuttling protons back across the MIM in a protonophoric cycle. Continued cycling relies on the formation of MIM-permeable anionic species that can return to the intermembrane space after deprotonation in the mitochondrial matrix. Previously described protonophores contain acidic groups that are part of delocalised π-systems that provide large surfaces for charge delocalisation and facilitate anion permeation across the MIM. Here we present a new class of protonophoric uncoupler based on aryl-urea substituted fatty acids in which an acidic group and a π-system are separated by a long alkyl chain. The aryl-urea group in these molecules acts as a synthetic anion receptor that forms intermolecular hydrogen bonds with the fatty acid carboxylate after deprotonation. Dispersal of the negative charge across the aryl-urea system produces lipophilic dimeric complexes that can permeate the MIM and facilitate repeated cycling. Substitution of the aryl-urea group with lipophilic electron withdrawing groups is critical to complex lipophilicity and uncoupling activity. The aryl-urea substituted fatty acids represent the first biological example of mitochondrial uncoupling mediated by the interaction of a fatty acid and an anion receptor moiety, via self-assembly.

4.
Eur J Pharm Sci ; 129: 87-98, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597206

RESUMO

We recently developed a novel aryl-urea fatty acid (CTU; 16({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid) that impaired the viability of MDA-MB-231 breast cancer cells in vitro and in mouse xenograft models in vivo. At present there is a deficiency of information on the structural requirements for the activity of CTU. Our initial study suggested that electron withdrawing groups were required on the aryl ring, and in this study we further evaluated the influence of the electronic properties of aromatic substitution on the capacity of CTU analogues to decrease MDA-MB-231 breast cancer cell viability. Analogues that contained strong electron-withdrawing groups in the meta- and para-positions of the aryl ring exhibited improved activity over CTU. Effective analogues down-regulated the cyclins D1, E1 and B1, and the cyclin-dependent kinases (CDKs) 4 and 6, that form complexes to coordinate cell cycle progression. Active CTU analogues also stimulated the phosphorylation and activation of the p38 MAP kinase signalling pathway in cells and both decreased proliferation (5-bromo-2'-deoxyuridine (brdU) incorporation) and activated apoptosis (executioner caspase-3/7 activity). These agents offer a new approach to target the cell cycle at multiple phases in order to efficiently prevent cancer cell expansion. Inclusion of the present structural information in drug design approaches could enhance the development of optimal analogues of aryl-urea fatty acids as potential anti-cancer agents.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Ciclinas/metabolismo , Ácidos Graxos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ureia/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Fosforilação/efeitos dos fármacos
5.
Nanomaterials (Basel) ; 8(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322115

RESUMO

Lipid-based drugs are emerging as an interesting class of novel anticancer drugs with the potential to target specific cancer cell metabolic pathways linked to their proliferation and invasiveness. In particular, ω-3 polyunsaturated fatty acids (PUFA) derivatives such as epoxides and their bioisosteres have demonstrated the potential to suppress growth and promote apoptosis in triple-negative human breast cancer cells MDA-MB-231. In this study, 16-(4'-chloro-3'-trifluorophenyl)carbamoylamino]hexadecanoic acid (ClFPh-CHA), an anticancer lipid derived from ω-3,17,18-epoxyeicosanoic acid, was formulated as a stable nanoemulsion with size around 150 nm and narrow droplet size distribution (PDI < 0.200) through phase-inversion emulsification process followed by high pressure homogenization in view of an oral administration. The ClFPh-CHA-loaded nanoemulsions were able to significantly decrease the relative tumor volume in mice bearing an intramammary tumor xenograft at all doses tested (2.5, 10 and 40 mg/kg) after 32 days of daily oral administration. Furthermore, absolute tumor weight was decreased to 50% of untreated control at 10 and 40 mg/kg, while intraperitoneal administration could achieve a significant reduction only at the highest dose of 40 mg/kg. Results suggest that oral administration of ClFPh-CHA formulated as a nanoemulsion has a sufficient bioavailability to provide an anticancer effect in mice and that the activity is at least equal if not superior to that obtained by a conventional parenteral administration of equivalent doses of the same drug.

6.
Pharmacol Ther ; 150: 109-28, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25603423

RESUMO

Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer.


Assuntos
Antineoplásicos/farmacologia , Lipídeos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Humanos , Metabolismo dos Lipídeos , Lipídeos/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/farmacologia , Fosfolipídeos/uso terapêutico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA